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Mathematical Modeling according to
The Far Side (time permitting)



“As in many hierarchies of scientific
models, the virtues of a simpler theory
can, under the right circumstances,
outweigh its vices.”

Raymond L. Lee, Jr., and Alistair B. Fraser, in

The Rainbow Bridge: Rainbows in Art, Myth,
and Science

“It is better to have an approximate
answer to the right question than an
exact answer to the wrong one”

- John Tukey



“The purpose of models is not (necessarily) to fit the data,

but to sharpen the questions...”
S. Karhin, 1983

“The careful use of models holds as much promise as the
careless use holds danger. The difference between
realizing the promise and encountering the danger lies in
genuine acknowledgement of limitations and productive
interplay of knowledge and imagination, of discipline
and adventure, of seriousness and humor.”

A. Rescigno & J.S. Beck, 1972

“...This model will be a simplification and an idealization,
and consequently a falsification. It is to be hoped that
the features retained for discussion are those of greatest
importance in the present state of knowledge.”

AM. Turing, 1953



What is a mathematical model?

The formulation in mathematical terms of
the assumptions and their consequences
believed to underlie a particular “real world”
problem.

The aim of mathematical modeling is the
practical application of mathematical models
to help unravel the underlying mechanisms
involved in biological (or other) processes.

Common pitfalls include the indiscriminate,
naive or uninformed use of models, but
when developed and interpreted
thoughtfully, mathematical models can

(1) provide insight into the nature of the

problem; |
(11) be useful in interpreting data; and
(111) stimulate experiments.
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The art of good modeling relies on

1)

(11)

(iii)

(1v)

a sound understanding and
appreciation of the biological
problem,;

a realistic mathematical
representation of the important
biological phenomena;

finding useful solutions, preferably
quantitative ones, and

biological interpretation of the
mathematical results - insights,
predictions, etc.



There 1s not necessarily a “right” model;
obtaining results which are consistent with
observations is only a first step and does
not imply that the model is the only one
that applies, or even that it is “correct”.

Furthermore, mathematical descriptions
are not explanations, and never on their
own can they provide a complete solution
to the biological problem — often there
may be complementary levels of
description possible within the particular
scientific paradigm.

Collaboration with biologists is needed
for realism and help in modifying the
model mechanisms to reflect the biology
more accurately.



On the other hand, workers in the
biological sciences (for example) need to
appreciate what mathematics (and its
practitioners) can and cannot do! (The
mathematician needs to do the educating
here; good communication is necessary.)

The mathematics is dictated by the biology
and not, in general, vice versa, however
tempting that may be! Sometimes the
mathematics used can be very simple. The
usefulness of a mathematical model should
not be judged by the sophistication of the
mathematics, but by different (and no less
demanding) criteria.



Some categories of tumor models

(selected)

“Demographic”: - exponential, logistic, Gompertz,
generalized logistic

Diffusion: - “generic”, deterministic (time
evolutionary)

Reaction-diffusion: - angiogenesis,
vascularization, invasion

“Elasticity”: - invasion, classification

“Speculative/metaphorical”: -

Can we usefully think about cancer in different
terms?

(See references in “A Survey of Models for Tumor-
Immune System Dynamics”, Adam, Bellomo, Eds.)



Mechanical/Pressure Effects

Oxygen Distribution

Nutrient Distribution

Generalized Growth Inhibitor Distribution

Destructive Enzyme Action

Metabolic Activity

Blood Vessel and Capillary Distribution

Cell Adhesiveness

pH

Immune System Response

Growth Inhibition due to Radiation Treatment



What is a tumor?

According to Greller et al. (Invasion &
Metastasis, 16:177-208;1996):

A tumor is an assembly of cellular
subpopulations exhibiting diverse traits at
several levels of biological organization:

genetic, phenotypic, cellular, physiological

Cellular heterogeneity:
genotypic, phenotypic, spatial, temporal

Includes variable patterns of:

gene expression, enzymatic activity, cell
surface properties, metabolic control,
hormonal dependencies, tissue invasiveness,
metastatic competencies, host immune
responses, resistance to treatment modalities



PROGRESSION:

an aggregate phenomenological
property

an irreversible qualitative change in
one or more characters of the
neoplastic cells

“...different from a mere extension
iIn space and time without qualitative
change...”

(Foulds,L., 1954, Cancer
Research,14:327-339)

does not necessarily correlate uniformly
with actual elapsed chronological time
“indicates development of a tumor by
way of permanent, irreversible
qualitative change in one or more of

Its characters” (Foulds)

We therefore identify “ progression state”
with “ degree of malignancy”



WHAT CHARACTERISTICS “DEFINE”
CANCER AS A DISEASE?

-'a tumor’s exploitation of cellular
heterogeneity, vis-a-vis

Increasing growth autonomy
loss of proliferative constraints
invasion of neighboring tissues
aquisition of metastatic potential

Certain phenotypic traits in tumor cells
appear to be primarily progression-driven, as
opposed to growth-driven, e.qg.

drug resistance
genetic instability
Invasiveness
metastatic potential

The following are probably more
growth-driven:

tumor mass and growth rate
vascularization



SYSTEM OF :? MODEL
INTEREST

METAPHOR (or simile?)

For a mechanistic or physical model, frequently
there exists a direct connection between the
system of interest and its mathematical
representation (e.g. struts and springs vs.
catastrophe theory)

For a metaphor, no such connection may be
known, though the system behavior may well
imply its existence. Surely this applies to some
biological systems...

Are there any intermediate levels of description?

May one such level for studying aspects of cancer
growth and remission be found in catastrophe
theory?



LSS



Catastrophe Theory

(with apologies to Rene Thom and
Christopher Zeeman)

e The phenomenon of interest is assumed to be
governed by a potential function of seme
kind: here V =V(a,b;x) with control
parameters a and b

o For the cusp catastrophe, V' =1 x4+9x2+bx

)

e Stable states are regarded as minima of V'

e More than one such state may be accessible to
the system: normal/cancerous,
benign/malignant, good prognosis/bad
prognosis

e Changing the control parameters a and b may
alter the form of V so as to change the
positions, relative heights or total number of
local maxima

e The cusp catastrophe exhibits bimodality,
discontinuity, hysteresis, divergence
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Introduction: a toy model of immune
systeml/cancer interaction:

In dimensionless form the governing ODE is

where a, B and 0! are respectively measures
of the mutation rate of normal cells to
neoplastic cells, the efficiency of the
cell-mediated immune response to the
presence of tumor cells (x = cell number),
and the local saturation limit for cancer cells.

Steady states of the system are defined by
—O0x3+(1-0x*+(1+a-Bx+a=0
or in canonical form

+aX+b=0
where




l+a-p
— 93 _a

The cusp catastrophe surface is defined by
X = X(a,b)

The projection of this surface on the (b,a)
plane defines the catastrophe set: a cusped
region, on the boundary of which

1
_+(_4 3)?
b=+(-4a)
For appropriate variations in ¢ and 5 (and
hence in the biological parameters a, g and
0), it may be shown that both high X - low X
(remission) and low X - high X (metastatic

growth) rapid transitions (catastrophes) are
possible.

(Invasion & Metastasis, 16:247-267;1996)



Behavior X

Figure 2

catastrophe

catastrophe

Constraints 5

(a,b)
&%




CELL
NORMAL NEOPLASTIC

Biological Arena / \

BENIGN MALIGNANT

Clinical Arena
(after surgery, radiation,
chemotherapy, etc.)

GOOD PROGNOSIS POOR PROGNOSIS



e What physiological, genetic or environmental
parameters — or combinations of them —
comprise “a” and “b”?

e How do we find them?

o Lots of raw data?

e If we can solve this “inverse problem” for the
control parameters, then we may have a

potentially valuable prognostic tool...

o It is likely that a and b are unique to each
individual...

e Could we formulate a personalized
catastrophe surface? (Sounds silly, but...)
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STOCHASTIC RESONANCE

“Stochastic resonance has become widely recognized as a
paradigm for noise-induced effects in driven nonlinear dynamic
systems.”

Bulsara & Gammaitoni (1996)

Necessary requirements for SR:

() a bistable system

(i1) a periodic driving signal - e.g. normal daily variations or
periodicity of chemotherapeutic or other regimens.

(1i1) a noise signal



Why the Schrédinger Equation anyway?

Suppose that [y(x)]? is the probability of the
“system” (neoplastic cell, tumor, metastasis,
etc.) being in progression state x), and
[ey'(x)]? is a measure of the propensity of the
system to “progress” (i.e. to move higher in
progression space x).

This is measured relative to the effectiveness
of the immune system to inhibit such
progression, denoted by the “immune
potential” V(x).

Consider the Lagrange density L (by analogy
with classical mechanics)

L = {2y’ ()] + V) (x)]*}
~ “K.E”+“P.E.”

In accordance with a Hamilton-type principle
(if it applies) we may wish to examine
extrema of the “action” integral



I=IDde

over some appropriate domain D, subject to
the constraint

ID[y(x)|2dx - 1.

Let
H=L-2yP = {2/ 0)]* + (V&) - Hp(x)]*)

where A is a Lagrange multiplier, which will
be identified below with the “free energy”
(metastatic or “invasive” energy?) of the
system.

From the Euler-Lagrange equation

OH _ 0 (oH _

we obtain a time-independent Schrddinger
“look-alike” equation
» d%y

e Wﬁ—{A—V(X)}y:O




In a simple case (a rectangular barrier of
height /'y > A and width q), the transmission
coeffient is

T [1 , Vesinh’[(a /7o =7 )/e] iﬁ‘

42(Vo — 1)

If ¢ - o, T - 17; this indicates that (i) for
extremely aggressive tumors, the immune
system becomes swamped, or (ii) for very
weak immune systems, tumor progression
may occur even for relatively low-aggression
types of cancer.
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Fig. 17 Bame as Fig. 18, with the mean energy equal to

barrier height,



