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1 Introduction

1.1 A few definitions
(see e.g. Krall and Trivelpiece 1973, Nicholson 1983, Fizpatrick 1998)

PLASMA: collection of large number of charged particles with a density
sufficiently low for the electromagnetic force due to the binary short dis-
tance interactions be much weaker than that exerted by the many distant
particles.

PLASMA APPROXIMATION: Regime where the kinetic energy of the par-
ticle strongly dominates the mean interparticle potential energy, in such
a way that the medium displays a COLLECTIVE BEHAVIOR where each
particle is subject to the continuous electromagnetic field created by the
distant particles and to the ambient field (described by the Maxwell
equations), with possible subdominant interactions with nearest neigh-
bor particles, usually referred to as COLLISIONS.



DEBYE SPHERE: sphere of influence of a given particle when surrounded
by particles of opposite signs that have been attracted and produce a
screening effect.

thermal velocity T
DEBYE SPHERE RADIUS: Ap = X A/ —
plasma frequency n

(T temperature, n density of the ions or electrons),
Independent of mass and thus comparable for different species.

It turns out that the plasma approximation is satisfied as the
1 n1/2

nA, ~T3)2
(Requires a large number of particles be contained in a Debye sphere).

PLASMA PARAMETER g = < 1.

PLASMA DESCRIPTION: SCALES LARGE COMPARED TO Ap.



In the asymptotic regime where the particles are only subject to the
electro-magnetic field resulting from the mean effect of many distant
particles and from external forces, the plasma is said COLLISIONLESS.

A collisionless plasma can be viewed as a collection of non interacting
particles.

It is thus of interest to understand the motion of an individual particle in
a given electromagnetic field, even if important effects in plasma physics
often result from cooperative phenomena.



1.2 The guiding-center description

A particle trajectory is generally very complicated and cannot be ana-
lytically computed in a closed form, except in very special situations.

Solvable case: uniform static electromagnetic field. The particle gyrates
in a helix about the field line, with a possible transverse drift.

Furthermore, when the magnetic field is slowly varying in space and
time compared to the radius and period of the particle gyromotion, the
problem is amenable of perturbation-theoretic methods, providing an
approximate description of the particle motion.

This leads to the GUIDING-CENTER THEORY, also called DRIFT THEORY
or DRIFT APPROXIMATION that averages out on the gyrotropic motion
of the particle near a circle around a “guiding center” whose sole motion
is retained.



When a large number of particles is considered, the evolution of the dis-
tribution function of the associated guiding centers can easily be derived
when using an Hamiltonian representation of the particle motion.

Alternatively, the distribution function can be obtained by starting from
the Vlasov equation for the distribution function of the particles, and

averaging on the gyromotion.

Both approaches are successively considered in these lectures.



2 Motion of a charged particle

Equation of motion of a (classical) particle of mass m and charge ¢
moving with a velocity v in an electric field e and a magnetic field b:

dv

ma:q(e—l—vxb)

(SI units are used. When using Gauss units, a factor 1/c where c is the
light velocity arises in front of the 2nd term of the r.h.s.).

In the general case where e and b depend on space and time, this equa-
tion may not be amenable to an analytic solution.

It is nevertheless easily solved when e and b are constant. This suggests
that perturbative solutions are possible when e and b display slow vari-
ations compared with the radius and the period of the circular gyration
the particle would execute if the field variations were neglected.



2.1 Charged particle in a constant magnetic field

2.1.1 No electric field
dv

m— =qu X b

dt

Velocity component v along the magnetic field remains constant.
Transverse velocity v, is that of a circular motion with an angular ve-

locity vector w = _4y,

m
A positively (negatively) charged particle gyrates in the left-handed
(right-handed) sense with respect to the magnetic field direction with

b
a gyro (or cyclotron) frequency € = |&| = M on the “Larmor circle”

whose center is displaced parallel to the magnetic field at a fixed veloc-
ity v -

The resulting motion thus traces out an helix whose axis is parallel to the

. . o v |
magnetic field and whose “Larmor radius” or “gyroradius” is pr, = ——.

Q



2.1.2 Presence of a constant electric field

dvy
mdt — g€
mdv—l— (e1 +vi X b)
dt — q\€_L 1 :

Parallel electric field leads to a uniform acceleration of the particle along
the magnetic field lines.

Transverse dynamics: it is convenient to separate v = ij_ + ug
where
x the “gyro-velocity” v’ is defined as the solution of the homogeneous
problem
dv',
dt
x the transverse velocity ugp of the center of rotation (called GUIDING
CENTER) is due to the transverse electric field and is taken to satisfy

=qu'| xb

m

O=e; +ug XDb
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exb
or UE — |b|2

This velocity that does not depend on the sign of the particle charge, is
usually called ELECTRIC DRIFT VELOCITY or “e X b velocity”.

Furthermore, a charge g describing a circular orbit of radius pyr with
qv’ Y (wh Q. h
= q— (where — is the
2wpr q27r 27

velocity v’ produces a mean current I =

number of gyrations per second).

This leads to define the MAGNETIC MOMENT of this current I as

- W
M=15—
SQ

where S = mp2 is the area encircled by the charge orbit.

—

- W ,|2
Thus M = ) with pu =

m[v'|” _ ¢®pZ|b]
2[0| 2m

Magnetic moment associated with particle gyration points always in the
direction opposite to the magnetic field direction. Gyrating charges tend
to decrease the magnetic field and plasma is DIAMAGNETIC.
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2.2 Charged particle in a slowly varying electro-
magnetic field

Assume the electromagnetic field to vary

2
on scales L > p;, (Larmor radius) and T > % (gyroperiod).

Small parameter exhibited by rescaling;:
x=Lr, t=T7,b= ByB, ¢ = %E (from Faraday equation), where
By denotes the mean value of the magnetic field. The equation rewrites

e = E(r,t) + 7 x B(r,t)

m 1 1 _
— = _— Or = —
gBoLT ~ QT

where € =

e’
Initial conditions 7(0) and 7(0) are given bounded function of e.
Since the rescaled equation is identical to the primitive one, up to the

replacement of m/q by €, the asymptotic problem is often addressed by
taking the dimensional parameter m/q — 0 in the original equation.
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1
One chooses L = —py,: electromagnetic field characterized by a UNIQUE
€

SPATIAL SCALE, assumed to be large.

Special case of the more general GYRO-KINETIC LIMIT where small am-
plitude perturbations of the electromagnetic field on scales comparable
to the gyro-radius are permitted in the transverse direction, in addition
to the long-wave longitudinal variations.
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Because of the (slow) variations of the electromagnetic field, the gyro-
motion is not strictly mono-periodic. One expands (Kruskal 1957)

oo C(t)
r = Z e R, (t)e" <
— 00

where the (complex) scalar and vector functions C' and R,, can depend
on € but have finite limits as € — 0.

We will here present a formal derivation of lowest order of the theory.
Corrections can in principle be computed to all orders.

Rigorous proof that the above expansion provides an asymptotic rep-
resentation of the exact solution of the initial value problem, valid as
e — 0, is given by Berkowitz and Gardner (1959).
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To lowest orders
r=Ro+e(Riec + R_je <)+,

(locally, a gyration on a circle centered at the GUIDING CENTER of vector
coordinate Ry and whose Larmor radius is ev/2|R;|, in units of L).

The € in the exponentials is associated with the gyrofrequency 2 = 1/eT

. . CR . CR_
= Ro+ e(Ry + ——)e +e(Roy — ——)e < +
. . 20R{+CR; C?R
# = Ro + e(R1 + 1: S e
. 2CR_+CR_,+ C2R_
+e(R_q — 1: ST

B(’I“) = B(Ro) + e(Rle% + R_1e”
E(’r) = E(Ro) + e(Rle% + R_q1e”
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2.2.1 Dynamics of the guiding center

Non-oscillatory term:
eRo = E(Ro)+RoxB(Ro)+eC [RlxR_l.VB(RO)—R_lle-VB(RO)} +O(e2).
To leading order,

E(Ro) + Ro x B(Rg) = O(e).

In particular

E(Ro) - B(Ro) = O(e).

Furthermore, the transverse velocity of the guiding center is given by

E(Ry) x B(Rp)

Roi =
- [B(Ry)|?

+ O(e)

where, as already mentioned, this leading order contribution is called the
ELECTRIC DRIFT VELOCITY or F x B drift.
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In the direction of the magnetic field, one has
. 1 :
Ro-B(Ry) = EE(RO)-B(ROHC[RlxR_l-VB(RO)—R_lle-VB(RO)} .B(Ro)+0(e)

where we assumed E) = O(e) to prevent the dynamics to be dominated
by a strong acceleration of the particle along the magnetic field line.

To simplify the writing, WE SHALL HEREAFTER NOT EXPLICIT ANYMORE
THE ARGUMENTS OF THE FIELDS E AND B AND OF THEIR GRADIENTS
WHEN EVALUATED AT THE GUIDING CENTER R).

To estimate R; and R_;, we consider the oscillatory terms with the
fundamental frequency, that obey

C%?Ry = CR1 x B+ O(e)
C?R_1 = —CR_1 x B+ O(e).

It follows that
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R_.=R

and

¢ = i|B| + Oe)

that in the primitive variables, identifies to leading order with the gy-
rotropic frequency evaluated at the guiding center.

Introduce the local orthonormal basis e, es, e3 such that B = | Ble;.

It follows that to leading order
’iRl — Rl X €1

or
R PI
Rl = —| 1| (62 + ’i€3> |R1| —

V2 V2’

This leads to rewrite

y 1 .
By = E(EH% x B) +|R1[2|B| [62 x (e3-VB) — e3 x (62.v3)} +O(e).
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Following Northrop (1961), we write

eo X (e3-VB) = (e3xey) X (e3-VB)
= (e3-VB-e3)e; —(e3- VB -eq)es
es X (e2-VB) = (e1 Xez) X (ex-VB)
= (es-VB-e1)es —(ea- VB -eg)ey.
Writing
V =ei(e1-V)+es(es-V)+es(es V),
one has

0=V -B=¢1-VB-e;j+ey-VB-¢e5+e3-VB -es.
and thus

es X (e3-VB) —e3 X (ea-VB) =
—(e1-VB-ej)e; — (e VB -e1)es — (e3- VB -ej)es = —V|B.

. 1 .
Ro = Z(E + Ry x B) —|R:[2|B| V|B| + O(¢)
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It follows that (n = |R1)*|B))

. 1
R() €61 = EE €1 — |R1|2‘B| €1 - V|B| —I—O(G)

or (Kruskal 1957)

. 1 1
Ry-B=-E-B-— §|R1|2B -VI|B|? + O(e) |.

€

E| = O(e) to prevent rapid acceleration along the field line.

This describes the guiding-center motion parallel to magnetic field line.
It involves the gyroradius that is still unknown.
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2.2.2 Drifts

: ExB
We have obtained Ry, = B + O(e)
ExB
where is the ELECTRIC DRIFT VELOCITY.

|B|?
When retaining the next order, we write

: E x B
Ry, = |;|2 + €Uy + O(€*) and thus

. 1
Ry = E(E .e1)er + Uy x B —|Ry|?|B| V|B| + Of(e).

Taking the cross product with b= e1,
1 ~ .
Uy = —bx (RO + |R.|?|B] V|B|) +O(e),

B
: ~ FExB E x B
or using Ry = v)b+ ik + O(e), U= B2

1 ~ dB d
bX (’UH U

Ui=1g dt ' dt

5 +|Ri[?|B| V|B|) +O(e).
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In the physical units,

This leads to define

% the MAGNETIC DRIFT —=b x V | B,

v~ db
x the INERTIAL DRIFT —b X —

Q “dat :
U5 (P u Vot A 5B
_be<at+U V>b+Qb><(b vh),

where the last term is the CURVATURE DRIFT,

~ dU
* the POLARIZATION DRIFT b X 7

: N 1 dE . :
includes the contribution Q5| dtL that in a plasma separates ions from

electrons.
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2.2.3 Characterization of the gyroradius

The equation for the guiding center R involves the gyroradius (also
called Larmor radius) through the magnetic moment, that is not deter-
mined by the leading order analysis performed above.

Neglecting the O(e) contributions and writing iRy = R; X e; do not
permit to determine |R;|.

In order to determine |R;|, we write more accurately (C = i|B| 4+ O(¢))
C?Ry — CR; x B = ¢€F,
where
F=-2CR,—CRy+R,-VE+ Ry x B4+ Ry x (Ry-VB) + O(e),

and require the SOLVABILITY of this equation.

SOLVABILITY CONDITION: F' orthogonal to the kernel Ker(L') of the
adjoint of the operator £L = —|B| + ¢BX.
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Since L is self-adjoint, Ker(L") = {¢/ iB x ¢ = |B|y}.

In other words, the elements ¢ of Ker(L') are the eigenvectors of the
operator V = ¢Bx associated with the eigenvalue |B|.

We are thus led to look for the eigenvectors of V.
For any vector w, Vw =1B xw

thus V2w = |B]*w — (B - w)B and V3w = |B|*Vw,
leading to the characteristic equation
V? —|BI*V =0,

which implies that the eigenvalues of V are —|B|,0, | B|.



24

V2

Characteristic equation, rewritten V(l — W) = (0 shows that
V2
Py=1-— BP is the projector on the zero eigenspace of V.

(One easily checks that it satisfies PZ = Py).

Determination of the projectors P; with ¢ = 4, on the two other direc-
tions, defined by VP; = ¢;|B|P; with ¢; = +1:

We write P, = a;V + B;V7,
(higher order power are useless because of the characteristic equation).

By substitution, we get  o;V? + 3;V° = | B|(a;V + B;V?).
It follows that o; = €Z|B‘BZ and 6@|B|2 = EZ|B|OJZ
Consequently, P; = B;(e;| B|V + V?),

1

where the condition P? = P; prescribes f3; = W
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In conclusion (Berkowitz and Gardner 1959),

1
Py=1- —|B|2V2
P, = L (V? + |B|V)
PIEE
_ 1 2
P, = 2|B‘2(v B|V).

2.2.4 Adiabatic invariance of the magnetic moment

Solvability condition: F' is orthogonal to the zero eigenspace of V asso-
ciated with the eigenvalue |B].

It reads F=FPF+P_F

or V?F + |B|VF = 0.
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Using the definition of V, we get the condition

Bx (BxF)—1iB|(BxF)=0
that is also rewritten in terms of C

C?F +(F-B)B+CF x B =0.

After substitution of F', this provides, to lowest order, a first order dif-
ferential equation for R;. Since its direction was already determined, it
reduces to an equation for the Larmor radius |R;]|.

The quantity entering the equation of motion of the guiding center is in
fact |R1|?|B| that identifies with the magnetic moment. We now show,
from the equation for |R;|, that, to leading order, this quantity is a con-
stant in time (with corrections O(e)).

One has to estimate

d .d - NP . ) YD *
Z(IBIIR?) = =iZ(CIR1[?) = =i| C|Rsf? + CRy - By + OB, - B,
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From
C?F+ (F-B) B+CF xB=0
F:—20R1—0R1+(R1°V)E—|—R1 XB—I—R() X (R1VB),
we have

C*(R; - F)+CR}-(FxB)=0

that also rewrites
C*(R!-F)—CF-(R! x B)=0.
Using that to leading order CR} = —R! x B, it follows that
C’R! - F+C?R!-F =0,

which implies Ri-F=0and R; - F* =0.
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These conditions rewrite
0=—2CRiR! — C|R;|?
+[R1 VE + R, x B+ Ry x (Rl-V)B] "R}
0 = 2CRtR; + C|R;y/|?
+[R’{-VE+R"{ x B+ Ro % (R;.V)B} "Ry,
where  (to leading order CR* = —R} x B)

(Rle)R"l‘:Rl(BxR"{):CRlR’{
(R* x B)-R, = —CR* - R;.

It follows that (C = i|B|)

d d
0= 2i£(|B||R1|2) — z’|B|£|R1|2 +Rf-VE-R,—R,-VE-R!
+R; - (Ro x (RY-VB)) — R} - (Ro x (R - VB)).



We write

Ry

-VE - Ry

One then uses the Maxwell equation

which gives

Ry

-VE - Ry

— Ry

.VE - R

—Ri-VE R =

29

“Ry-[R* x (V x E)].

8tB = —V X E,
= Rl . (R’{ X &5 )
dB :

- R, [R’{ x (E ~ Ry - VBH

dB ) : .
= dt (R1 X R ) (Ro . VB) . (Rl X Rl)

: dB

= —1 R1 261 : <% — (RO VB))

Ri)?

2 d| B|
dt

’5|R1| (Ro V|BD
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On the other hand,

Ri-(Rox (Rf-VB))—cc. = Ry-[(Rf-VB)x Ry —c.c]
O R? | |
= 5 Ry - ([(62 —ie3) - VB] x (ea + ie3) — C.C.)
— Z|R1 230[(62 . VB) X €3 — (63 . VB) X 62]

— i|R.|?Ro [ ~(es- V|B|)eg — (es - V|B|)es

+|Bl[(es - Ver) x e3 — (e3 - Ver) x 62]]

Since
0=V-B=|B|V-ei+e-V|B|,

we make the substitution
—(e2-V|B|)ea—(e3-V|B|)es = —V|B|+(e1-V|B|)ey = —V|B|—|B|(V-e1)ex

where
V-.e1 =ey-Vey e+ e3-Vey - e3.



Furthermore,

(62 . Vel) X €3

and

(63 . Vel) X €9

We thus finally obtain

up to O(e€) corrections.

(e2

(e2

—~
Q
w

Q
w

—(e

: V@l) X (61 X 62)
-Vey -eg)er — (ea - Ve - e1)eg

. V61 . 62)61

: V61) X (63 X 61)
. V61 . 61)63 — (63 . V61 . 63)61

3 V61 . 63)61.

a
dt

(IBIIR:[*) = 0|

31
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2.2.5 Longitudinal dynamics of the guiding center

Coming back to the physical units, we rewrite to leading order, the
equation of motion of the guiding center along the magnetic field line
in the form

mRo-b=qb-E — ub-V|B|

AN

b : unit vector along the local magnetic field (previously denoted by ey).
q° q°

The parameter = —— |B||pr|* = —|B||R1|?, that at the order of the
2m? m?

computation identifies with the magnetic moment, is an “ADIABATIC
INVARIANT”, in the sense that its variation is negligible at the order of
the retained approximation.

The exact magnetic moment (that to leading order in e reduces to

2
q—|BHR1|2) is actually constant to all order in € (without being exactly
m

constant), in the sense that it deviates from a constant by a quantity
that goes to zero faster than any power of e.
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The equation for the longitudinal dynamics of the guiding center can be
rewritten in various forms.

Writing the guiding center velocity Ro=v=U+ v”g with

~ ~ ExB
V=b-vand U -b=0, U=ug+0(e) = ‘;P + 0(€)
- d - -
mb-—v:qb-E—,ub-V|B|.
dt
Since ~
~ dv dUH db dUH ~ dU
T w Ve a T a
one has (Snyder et al. 1997)
dUH ~ ~ ~ dU
m%—qb-E—ub-V|B|—mb-%.
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Differently, we can rewrite

AN

m—L =qb-E—pb-V|B|+mU - (5 +vb-Vb),
here 2 =8,+U-V  (while L =8, +v-V)
wiere Dt_t Wledt_t (% .

Furthermore, to leading order the electric drift velocity U = Ro. obeys
E+UxB=0.

It follows that OB =-V x E =V x (U x B)

or
DB
“— -B-VU- (V- -U)B.
- VU —(V-U)

This result is used to compute

Db 1 (| DB D|B| D|Bl B DB

- B———B) here 1 — 2 22
Dt [BE\"'"'Dt = Dt YRS D T B] Dt
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We get
Db~ ~ ~
— =b — (b- b)b
Dy VU — (b- VU - b)
and R
Db ~ ~ _U?
-— =1 U=b-V—.
U D VU -U \% 5
Introducing the (local) curvature & =D Vb of the magnetic field line,
we obtain
dvy _ > n ~ U2
m—- =qgb-E — ub-V|B| —|—mb-V7—|—mvH(U-/~s) .

Furthermore, the longitudinal electric field b- E can be expressed as the

gradient of a scalar field.



In terms of the magnetic potential A, one has
VXE:—atB:—atVXA

or FE=-0;A—V®, where ® is a scalar function.

Using Clebsch variables (see below),
which requires zero magnetic helicity

B=VaxVg , A=aVp, and

— —6’tonB — aV@tﬁ — Vo
—0;aVp — V(aofB) + 0,6Va — Vo
E -V

with B’ ' =0,8Va— 0;,aVB and & =&+ ad:fs5.

Since E' - B =0, one gets b-E=—b- V@', which yields

dUH B [J?2

dt

m—- = —gb-V®' —,u/I;-V|B| —l—mZ-V7 + muy (U - k) |

36



Introduce the arc length s along the field line, such as xk =

We then rewrite v (U - k) = v (U —

(%) B —vaE oU

0s s’

(Mjglhus and Wyller 1988)

b

Os

d’UH
dt

U? ~
= —qb-V® — ub-V|B|+ mb- V——mv”b

oU

s |

37

which leads to
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2.2.6 Application: Magnetic mirror reflection
Writing
~ dd’
’UHb V@, = E —U - V(I)/ —875@/
d| B

ob-VIB| = =2 —U - V|B| - 8B,

one gets from the longitudinal velocity equation (Northrop 1961)

d (mvj o
dt( 5 ” +N|B|+CJ‘I”) =U: [V(MIBI+<I>’)+mv||(5'tb+v||asb+U-Vb)} +0; (1| B|+®”)

IMPORTANT SPECIAL CASE : to leading order, the electromagnetic field
reduces to a STATIC MAGNETIC FIELD (small electric field). The above

. . m
equation reduces to conservation of kinetic energy 5(Uﬁ + v ]?).

In this context, the adiabatic invariance of the magnetic moment u plays
an essential role for particle trapping, using “MAGNETIC MIRRORS” ( see
e.g. Chen 1984).
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As a particle moves from a weak-field region to a strong-field region, it
sees an increasing |B|. In order to keep u constant, |v |* must increase.
The conservation of the particle kinetic energy then implies that |v]
should necessary decrease.

If | B| reaches large enough values for the longitudinal velocity to vanish,
the particle will be reflected back to the weak-field region.

The non uniform field of a pair of coils forms two magnetic mirrors be-
tween which a plasma can be trapped (MAGNETIC BOTTLE).

The trapping is however not perfect.

Question: Conditions for a particle to be trapped or to escape.
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Let B,,;n be the minimum magnetic field that is present in the midplane
and B,,q, the maximum magnetic field.

A particle with transverse velocity v, o and longitudinal velocity vy at
the midplane will have a zero longitudinal velocity and a transverse ve-
locity v/, at the turning point where the field amplitude is B’.

From the invariance of p = sm|vi0|?/Bmin = sm|v/ |?/B’ and the
energy conservation |v' ) |? = v o]|* + fuﬁo, one has

Bmin o |UJ_O|2 o |/UJ_O‘2

.92
— — — sin“ 0
B P Jviel? 4 v

where 6 is the PITCH ANGLE of the orbit in the weak-field region. Parti-
cles with smaller # will mirror in regions of higher B. If  is too small,
B’ exceeds B4z, and the particle does not mirror at all. The smallest
6 of a confined particle is given by

B 1
sin 0,, = Bm(lm = R (R is the mirror ratio).
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The angle 6,, defines in the velocity space the boundary of the “loss
cone”, whose axis is along the longitudinal velocity.

Particles with velocity within the loss cone are not confined.

The magnetic field of the earth, being strong at the poles and weak at
the equator forms a natural mirror with rather large R,,.

The oscillation (or bouncing) of a particle between the two mirror points
M, and M, leads to define in this case of a static magnetic field,
a second adiabatic invariant called the “LONGITUDINAL INVARIANT”

Mo
I = mu) ds
M+
(see e.g. Ferraro and Plumpton 1966).

For a detailed discussion of adiabatic invariants, see Northrop (1963,
Chapter 3).
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The number of adiabatic invariants (that is less or equal to the number
of degrees of freedom) is determined by the number of periodicities.

For example in the case where the magnetic field is nowhere large enough
to reflect the particle, the particle displays a periodic gyration about the
magnetic field line but no periodicity in the motion along this line. The
only adiabatic invariant is the magnetic moment.

In contrast, if the field is such that a particle is always trapped and os-
cillates between two mirrors, there will be a “second” or “longitudinal
(also called parallel) invariant” associated with the parallel motion.

Finally, if the drift from line to line as the particle oscillates between
mirrors carries the particle repeatedly around a close surface, there is a
third periodicity associated with this motion and, as a consequence, a
“third” or “flux adiabatic invariant” will exist.
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2.2.7 A natural example of plasma confinement

THE (TWO) VAN ALLEN RADIATION BELTS: tori of charged particles
around Earth, trapped by Earth’s magnetic field.

Particles trapped in the VAN ALLEN RADIATION BELTS possess the three
above periodicities and the associated adiabatic invariants (Northrop
and Teller 1960): GYRATION around the geomagnetic field lines (typi-
cally thousands of time per second), NORTH-SOUTH BOUNCING motion
along the field line (typically lasting 1/10 second), slow DRIFT by which
they move from one field line to another one nearby, slightly rotated
around the Earth’s magnetic axis (typical time to circle the Earth, a few
minutes). Viewed from the north pole, a positive ion gradually rotates
clockwise, an electron counter-clockwise.

The drift of positive ions and negative electrons in opposite directions
results in an electric current, called RING CURRENT that circulates clock-
wise around the Earth when viewed from north.
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The magnetic field produced by the ring current contributes (rather
slightly) to the magnetic field observed at the surface of the Earth.

However during MAGNETIC STORMS, charged particles are massively in-
jected into the Van Allen belts from the outer magnetosphere, giving rise
to a sharp increase in the ring current, and a corresponding decrease in
the Earth’s equatorial magnetic field.

These particles eventually precipitate out of the magnetosphere into the
upper atmosphere at high lattitudes, giving rise to intense AURORAL
ACTIVITY, with serious interference in electromagnetic communications
and, in extreme cases, disruption of the electric power grids. The mag-
netic storm of March 13, 1989 was so severe that it tripped out the
whole Hydro Quebec electric distribution system (see Fitzpatrick 1998
for a short discussion).
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2.2.8 Guiding center dynamics along a magnetic field line

CLEBSCH VARIABLES « and 3 , such that B = Va x V3 (Kulsrud 1983).
If such scalars exist, B here defined is divergence free.

One also has B-Va =0 and B - V3 = 0, which implies that

a and (B are constant along the magnetic field lines.
FIXING a AND 8 CHARACTERIZES A MAGNETIC FIELD LINE.

Jacobian of the transformation from coordinates r = (x,y, z) to coordi-

nates (o, 3,s) is J = Vs - (Va x V).
Since Vs = i)\, J = |B| and dadp represents the element of flux:
If a surface S cutting the field lines is parameterized by the coordinates

a and (3, dadf is the flux through the corresponding element of area.

THE VARIABLES Q, ﬁ ARE NOT UNIQUELY DEFINED.
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2.2.9 Determination of a couple of Clebsch coordinates

Choose an arbitrary parameterization «, 8’ of the surface S and extend
them through all space so that to satisfy B-Va = 0 and B - VS’ =0,
that is to say by keeping them constant on the magnetic field lines.
Then,

B x (VaxVpg')=(B-Vs)Va— (B-Va)Vs' =0.
So B = g(Va x V'), where g is a scalar.

1
From V-B =0, wehave 0= (VaxVp')-Vg=~-(B-Vyg),
g

so g is constant along the magnetic field lines and is thus a function of
o and 3.

d
Now, choose 8 to satisfy d—g’ = g(a, 8") and get

B=vVax Lvs —vaxvs

dg’
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After the variables «, 8 have been characterized to represent B at a
given time, they can be specified at later times by prescribing

8toz—|—U-Voz:O

One indeed has

0t(VaxVB)—V x (U x (Vax Vg) =
V(0ia) x VB+Vax V(0;8) —V x[(U-VB)Va— (U -Va)Vp] =
—V(U -Va) x VB —Va x V(U - Vp)

—V({U -VB) xVa+ V(U -Va) x V3 = 0.
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2.2.10 Hamiltonian description

Instead of the arc length s along the magnetic field line, let us now
introduce the coordinate o such that ¢ has a constant value at a point
moving at the electric drift velocity U. This implies

0o +U -Vo =0.
Changes in ¢ thus correspond to the true guiding center motion along the
do
magnetic field line characterized by («, 8). Let x = —, that represents

ds’
the stretching of the magnetic field line. One has

Oex+U-Vxy+0,U-Vo=0
or, since Vazxg, DX — —Xb 0sU.

The equation for the longitudinal velocity of the guiding center
dy _ _ = n ~ U2

m— = —qb-V® — ub-V|B| +mb - V— — m'UH/l;- O0sU rewrites
dUH U? muv| Dx
ke _ q®' — u|B —)
R O YA



49

d D

d_D &
or (dt Di + ) V)
DUH ~ U? mu| Dy
— b Vo = ( _¢®' — u|B —) |
m D + mo)b- Vo 0 q u|B|+m 5 + ¥ Dt

where we can substitute

~ 1
’U||b : V’UH — ’U||(9S’U|| — §8Svﬁ

to get
Dvy v Dx Uy
—_ A=A :88(— & — u|Bl+m— — —).
m(Dt XDt> q®" = p| Bl +m=- —mo
. mu) .
Defining p = —, we obtain
Dp U2 X2p2
—:aa(— & — 4B _ )
Dt q® — plBl+m =0

that describes the motion of a guiding center of mass m and charge g
along a moving field line.
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On a magnetic field line (fixed a and f3),

[]2 2,2
pe (vl m )
2 2m
Similarly, under the same constraint,
. _ do X°P _ 4 (X2P2>
O —= —8§ —= vy = — = .
ds XY m P\ 2m
Defining the Hamiltonian
U: 1
H =q® + p|B| - m— + —x’p*|,
2 2m

we write the guiding center equations in the Hamiltonian form

p=-0,H , ¢=0,H|
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2.2.11 Guiding center distribution function

By Liouville theorem, we get that the guiding center distribution function
F(a,8,0,p, 1,t) obeys

O F + 8,HO,F — 8, HO,F = 0,

that rewrites (Grad 1966, Mjglhus and Wyller 1988)

2 1
@F+§£@F—&{@%+Mm—fﬁﬂ+——ywﬁ@on
m 2 2m

~.

an equation to be written for each particle species.
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3 Guiding center limit of Vlasov equation

Vlasov equation for the distribution function in velocity and position
spaces of a given particle species

atf+v-Vf+i(E+uxB)-vvf=0.
m

fd?vd>x is the fraction of particles in the phase-space volume dvd3z
centered at velocity v and position x.

We concentrate on the variations of the distribution function with fre-
quencies low compared to the gyrofrequency of the particles and scales

large compared to their Larmor radius (Kulsrud 1983, see also Frieman,
Davidson and Lanngdon 1966, Volvov 1966).

We are thus looking for a description where the small-scale dynamics is
averaged out.
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3.1 The guiding-center ordering

We assume that both the time scale and the length scales parallel and

perpendicular to the local magnetic field are of order e~ 1.

This regime is a limiting case of the more general “gyrotropic ordering”
that permits small-magnitude perturbations with typical transverse scale
comparable with the Larmor radius.

The last term in Vlasov equation (that contains no space or time deriva-

tive) is dominant by a factor e~ !.

One expands f = fo + f1 + -+ where f,, is of order €".
To leading order, (E + v X B) Vo fo =0,

It is convenient to rewrite the velocity of individual particles:

—~ EF x B
v:U—I—v’—l—'UHb where U = |;‘2

is the electric drift velocity.



One easily checks that
E+vxB=Ejb+v xB.
The leading order equation rewrites
B0y, fo+ (v x B) -V, fo=0.
We now introduce the velocity cylindrical coordinates by writing
v = v cos¢ es + v sing es.

Consequently,

sin ¢

Vo = €3 ((:OS(b(?vL —

vy vy

It follows that
(U’ X B) . Vv/ — —B<‘9¢.

3¢) + es (sin POy, + COS¢8¢).

54
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One thus has
E||3v|| fo—|B|0sfo = 0.

If £y = O(1), then fy is constant along an helix in velocity space ex-
tending to infinite velocities, and fo cannot approach zero as v — oo.

Consequently, Ej = O(e). Thus,

Oy fo =0

2
and fo = Fo(r,w,v),t) where r = (z,y,2) and w = %

Up to this axial symmetry in velocity space, fo is undetermined. It will
be characterized by considering the next order in the expansion.
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At the next order, we have

q|B|

m

Opf1 =0 fo+v-Vfo+ %Enau” fo |

Since f; is periodic in ¢, this equation requires the
SOLVABILITY CONDITION

/ngr (0efo+v - Vo + =B, fo ) d = 0.

When replacing fo(z,v,t) by Fo(z,w,v) t), one must take into account
that w and v now depend on space and time.

One has 8tf0 = 8tF0 + 8wF08tw + aU”FOat’UH with

AN

8tw = ’U, : 8t(—U — ’UHb) — —’U, : 0tU — ’UH’U, . 8{[)\
Byvy = Op(v - b) = (U +v') - 9;b.
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Consequently,
27

Oufodd = 27 (OFy + Oy Fo U - 9b).
0

One also directly has

27
g/ E) 0y fod¢ = 2By 0y, fo.
m Jq m

27
Estimating / v-Vfodp where Vfo=VFy+ 0,FoVw + 3U||F0VU||7
0
requires to compute

AN

27 2T .
/ (% de¢ — / (U + ’U||b + ’U,) . [V(”U —U — UH[))] . ’U,dqﬁ
0 0

AN

27
= _/ (vicosg ey +visinges) V(U + v b) - (vy cosd ez + vy sing ez)do
0

AN AN

= —2nwleg - V(U + vy b) - e +e3 - V(U + v)b) - e3]
_ —27rw<V U=b-VU -b+vV -E)
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and

27 27 R 27 .
-Voydp = -V)(v-b)dop = -Vb-vd
/0 v - Vo dé /0 (v-V)(v-b)dd /0 v vdg

2w 2w

~ / (U+v||b)-Vb-(U+v|]b)dq5+/ v - Vb v dg
0 0

= 27(U-Vb-U+vb-Vb-U+wV -b).

The solvability condition thus reads

AN

Oy + (U +vb) - VFo —w(V-U ~b-VU b+ vV - 5) 0 Fo

+(U-VB-U+ub- Vb-U+wV b+U - 9b+ =B )0, Fo = 0.
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AN

d
Defining — = 0; + (U +vb) -V, one rewrites

dt
U-Vo-U+vyb-Vo-U+wV-b+U-0b+—E = U-—+wV-b+ —E
m dt m
~ dU 2 ~ q
= —b-— +—=V-b+ 2E.
dt i 2V +m ”
1 .
Furthermore wd, = 5’0 10y, - One thus obtains

Oy + (U +vjb) - VFy = ==(V-U =5 VU -b+v/V -b) 0, Fo

2

~ dU v _ ~ ¢ B
+( -5 — 2V-b+aEH)8@”F@_O,
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mlv |
2|B|
tation for the distribution function for the sake of simplicity)

or in terms of the magnetic moment u = (keeping the same no-

OuFy + (U +vb) - VEy — (V- U =b- VU -5+ 0V -b) 9, Fo

~ dU ~ q
+(=b- =+ LBV b+ By )0, Fo = 0.

When considering the characteristics of this equations, the coefficients of
0, Fp identifies with 1. Since, the magnetic moment is invariant at the
order of the expansion, this coefficient should vanish.

One thus gets (Snyder et al. 1997)

- - dU
0o+ (U +vyb)- VFy + (—b- == + £|BIV -5+ LB )9, Fy =0,

or using 0 =V -B = |B|V b+Db- V|B|,

- ~ U
O+ (U +vyb) - VFy + (=b- = = £5.V|B|+ LB )9, Fo = 0|




When introducing the coordinate system («, 3,0) such that

8tOé+U'VOé:O
oB+U-VB=0
0,0+ U -Vo =0,

we define F(Oé, 67 g, b, V)|, t) = Fp (513, Y,z 1L, V)| t)a where p 18 constant.

One easily checks that 0:Fo+ U -VEy =0 F.

AN

Furthermore, b-VFy=0,F = Z—U&,F
S

where s is the arc length along the magnetic field line.

61
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One gets

do ~ dU 2
OF +v|20,F + (=b-— = £b.v|B|+ LB )a, F = 0|

Using the previously established relation

~ dU db U?
b= =—U -2 = —(b- )
dt dt Vo
mu)| do
and replacing the variable v by p = —— with x = T one recovers the
X S

kinetic equation derived from the Hamiltonian description of the guiding
center of an isolated particle.
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3.2 Conservative form of the guiding center kinetic
equation

Let us define

=-b.— — —b-V|B —F
Il dt m V| |+m I

and rewrite the kinetic equation in the form

AN

OF + (U +)b)- VF + g0y, F = 0.
The induction equation B +U-VB=B-VU —(V-U)B gives
1 N

— _U.VB-b+B-VU-b—|B|(V-U).

AN

Since 0y, g = ~b-VU - b, one writes the guiding center kinetic equation
in the phase conservative form

0(|BIF) +V - (|BIF(U + b)) + 0, (IBIFg)) =0,
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3.3 Hydrodynamic description

We now consider a plasma constituted of protons and electrons.

We denote by a subscript r the particle species, when considered in gen-
eral, and by ¢ or e when referring specifically to ions or electrons.

rd?

Uy = Jvf v, hydrodynamic velocity of the particles of species r.
[ frd3v
. [ frd®v .

In particular, w, = T fodo parallel velocity.

The definition of these hydrodynamic quantities is at this step purely for-
mal since we have not shown that a collisionless plasma can be regarded
as a continuous medium. For example, the hydrodynamic velocity is the
mean velocity (per unit volume) of an ensemble of non interacting par-
ticles rather than the velocity of an elementary volume of matter, as it
is the case in usual hydrodynamics.
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Using a hydrodynamic description for a neutral collisionless gas would
be meaningless.

It makes sense in the case of a magnetized plasma because of the im-
portant role played by the self-consistent fields in plasma phenomena.
These fields replace collisions for binding particles together and make
it difficult for individual particle to act independently (see e.g. Volkov
1966). As seen below, electron velocities are very closely tied to the ion
velocities, as the result of the self-consistent magnetic field.

At the leading order considered in the present theory, the distribution
functions is approximated by that of the guiding center and is thus gy-
rotropic, in the sense that the transverse velocity is isotropically dis-
tributed.

It follows that when writing v = U + v + v, one gets u, = U + u,.
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Let us now consider, the Maxwell equations where we neglect the dis-
placement current (the velocities of the considered disturbances are much
smaller than the speed of light) in the form

V-FE = 47qu,~n,,~/frd3v

V X B:47qu,,~nr/fufrd3v
8tB: —V x E
V-B =0,

where /frd3v = 1.

Note that the equation for the distribution function is written in terms
g : 2T ,
of the guiding system coordinates such as d°v = —|B|du,dv|, which
my

makes the conservative form specially convenient.
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Because of the assumption of slow variation of the electromagnetic field,
the gradient operator involves a small parameter.

For an proton-electron plasma (where ¢; = —q. = q), one has to leading
order

Q(nz — ne) =0

Q(nzuz — neue) — 07
that implies n; = n., = n and u; = u. = u.
In particular, the parallel components satisty w; = uje = uy.

As a consequence, we write the plasma hydrodynamic velocity in the
form u = U + u) b where U is the electric drift velocity.
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From the definition of the electric drift velocity, and the subdominant
character of the parallel electric field component, one has £ = —U x B.
Consequently, the induction equation has the usual form of ideal MHD

OB =V x (u x B),

since the parallel velocity does not contribute to the cross product.

Furthermore, in the present asymptotics where both particle species
have the same hydrodynamic velocity, one easily derives from the
Vlasov equation, the usual equations obeyed by the plasma density
p = (m; + m¢)n = myn and the plasma velocity u:

Op+ V- (pu)=0
p(Oyu +uVu) =jx B—V-P.

1
The current j is given by j = 4—V X B.
™
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The distribution functions being gyrotropic to leading order,
the pressure tensor P = Z My Ty /('U —u) ® (u—v) frdv
T

is also gyrotropic and rewrites P = p | (1 —3@3) + p||/l;®/b\

with p, = Z % /U’2f7~d3fu and p; = Zmr /(’UH — )’ frd’v.

An equation for the pressure tensor can also be dirived from the Vlasov
equation, that reduces to the so called CGL (for Chew, Goldberger and
Low 1956) equations for the perpendicular and parallel pressures.

Retaining corrections to the guiding-center distribution function gener-
ates non-gyrotropic contribution to the pressure tensor, often called finite
Larmor radius corrections (Friedman et al. 1966, Volkov 1966, Yajima
1966). The complexity of the calculation increases nevertheless rapidly
with the order, when no additional assumption is made.
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CGL equations for the perpendicular and parallel pressures involve a
heat flux tensor that in the present asymptotics is also gyrotropic and
characterized by two scalar functions.

Equations for higher order moments of the distribution functions can be
written leading to a hierarchy that is usually unclosed, except in specific
regimes such as the adiabatic regime that involves no heat fluxes.

In more general regimes, heuristic CLOSURES have been proposed. They
involve the description of the heat fluxes and include Landau damping

(Snyder et al. 1997, Passot and Sulem 2003).

Extensions also retaining deviations from gyrotropic pressure and heat
flux tensors, associated with finite Larmor radius (FLR) corrections, were
recentlty proposed in a weakly nonlinear regime where reductive pertur-
bative expansions of Vlasov-Maxwell system lead to exact closures for
MHD waves in the long-wave limit (Passot and Sulem 2004).
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A more general kinetic theory called the GYROKINETIC DESCRIPTION has
been developed during the last decades. Retaining small amplitude per-

turbations with transverse scales comparable to the particle gyroradius,
it takes FLR effects into account.

A GYRO-FLUID DESCRIPTION is obtained when equations for hydrody-
namic moments are derived from the gyrokinetic distribution function.

Such descriptions are extensively used in fusion plasmas.
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