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LECTURE 6

FROM BOLTZMANN TO INCOMPRESSIBLE NAVIER STOKES

CONVERGENCE PROOF




The incompressible Navier-Stokes scaling

eConsider the dimensionless Boltzmann equation in the incompressible
Navier-Stokes scaling, i.e. with|St = 7Kn = e < 1.

1
eath _I_ U - VQjFE — _B(FG, FE)
€

eStart with an initial data that is a perturbation of some uniform Maxwellian
(say, the centered reduced Gaussian M = Mj g 1) with Mach number

Ma = O(e) |.

F'™ = M1 01+ ef™

eExample 1: pick '™ € L2(R3) a divergence-free vector field; then the
distribution function

FM(2,v) = My yin(zy.1(V)
Is of the type above.



eExample 2: If in addition 67 € L2 N L°°(R3), the distribution function

F'(z,v) =M ewin () . (v)

1—e0(z), 1—e0i ()’ 1—e0 ()

IS also of the type above. (Pick 0 < € < HHZ'”lH ,then 1 — €6" > 0 a.e.).
LOO

e| Problem |: to prove that

1
/ vFe(t,z,v)dv — u(t,z) ase — 0O
e /R3

where u solves the incompressible Navier-Stokes equations
ou—+u-Veu—+ Vep =vAzu, divpyu=20
— N
u‘t:O — Y

The viscosity v Is given by the same formula as in the Chapman-Enskog
expansion.



A priori estimates

eThe only a priori estimate satisfied by renormalized solutions to the Boltz-
mann equation is the DiPerna-Lions entropy inequality:

1t
H(F|M)(t) + 6—2/0 /R3 ///R3><R3><82 d(Fe)|(v — vx) - w|dvdvsdwdxds
< H(F{"|M)

eNotation:

f .
H(flg) = //R3><R3 <f In <§> — f+ g) dxdv  (relative entropy)

f’fi)

(dissipation integrand)

d(f) = L(f'fl = ff)
(f) =z(ff ff)n<ff*




eintroduce the relative number density, and the relative number density
fluctuation:
Fe— M
ge —

F,
GEZ—E,
M e M

ePointwise inequalities: one easily checks that

(VGe—1)? < C(GeInGe — Ge + 1)
2 IDal
(\/GQGQ* _ \/GGGG*) < 1(GLGL, — GG In <g€g€>
€ €k
— d(Ge)

eNoticethat ZInZ — Z + 1 ~ 5(Z — 1)? near Z = 1.




eEXxpress that the initial data is a perturbation of the uniform Maxwellian M
with Mach number Ma = O(e):

e\With the DiPerna-Lions entropy inequality, and the pointwise inequalities
above, one gets the following uniform in ¢ bounds

//R3 R3(\/Ge — 1)°Mdvdz < Ce?
X

~+o0 5
/o /Rs ///Rsngxsz (\/@ - \/@) dudzdt < Ce*

where p is the collision measure:

du(v, vy, w) = [(v — V%) - w|dw Mydvs M dv
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The BGL Program (CPAM 1993)

eLet F'™ > 0 be any sequence of measurable functions satisfying the
entropy bound H(F™|M) < C*e?, and let F. be a renormalized solution
of the scaled Boltzmann equation

. mn
_F6

1
eatFe_I_v‘VxFE:_B(FE)FE)? Fet_
€

elLet g = ge(x,v) be such that Ge := 1 4+ ege > 0 a.e.. We say that
ge — g entropically at rate e as ¢ — O iff

| 1
ge — ginw — LL (Mdvdz), and S H(MGM) — 4 / / > Mdvdz
€




Theorem. Assume that
Fi™(z,v) — M(v)
eM (v)
entropically at rate e. Then the family of bulk velocity fluctuations

1
—/ vFedv
e JR3

is relatively compact in w — Llloc(dtd:v) and each of its limit pointsas e — 0O
IS a Leray solution of

uw™(x) v

8tU+d|Vx(u®u)—|—vxp:yAxu’ diVQ;’U,:O, ut_o :uin

with viscosity given by the formula
v = 1—10/A - AMdw

where A =14



Method of proof

eRenormalization: pick v € C*°(R ) a nonincreasing function such that

R _d
Niosm =1 Mgy =0 5e7(2) = (= = D¥(=)
eThe Boltzmann equation is renormalized (relatively to M) as follows:
1 1_
O¢(geve) + ;’U - Va(geve) = 6—3’YGQ(G67 Ge)

where ve := v(Ge), 7%e = 7(Ge) and (G, G) = M~ 1B(MG, MG)



e Continuity equation | Renormalized solutions of the Boltzmann equation
satisfy the local conservation of mass:

€0t{ge) + divyg(vge) = 0O

eThe entropy bound implies that

(14 |fv|2)g€ IS relatively compact in w — Llloc(dtdac; LY (Mdv))
Modulo extraction of a subsequence
ge — ginw — L} (dtdz; LY (Mdv))

and hence (vge) — (vg) =: win w — Llloc(dtdx); passing to the limit in

the continuity equation leads to the incompressibility condition

divyu =0




eHigh velocity truncation: pick K > 6 and set K. = K|Ing¢|; for each
function £ = £(v), define i (v) = g(fu)1|v|g<K6

eMultiply both sides of the scaled, renormalized Boltzmann equation by
each component of vy :

: 1
O{vicgeve) + dive Fe(A) + Va— (5]v[%, 9¢7e) = De(v)

where

1 .
Fe(A) = ¢(ARgere), De(v) = 5(vkAe(GGlr — GeGer) )

eNotation: with dy = |(v — v«) - w| M dvMsdvsdw (collision measure)

@ = | joMav, (v)=[[[ uv0)d




eThe plan is to prove that, modulo extraction of a subsequence

(Wi geve) — (vg) =: u inw — L .(Re x R3)
D¢(v) — 0 in L (R4 x R3) and
P (divyz Fe(A)) — Pdivx(u(g)z) —vAgu in w_Llloc<dt’Wgc_iso’c1)

for s > 1 as e — 0, where P is the Leray projection.




Conservation defects — O
(as in FG+DL, CPAM 2002, but simpler)

Proposition. D¢(v) — 0in L}

loc

(Ry xR3)ase— 0.

oeSplit the conservation defect as

Del (v) = €i3<<’UKﬁe ( G/eG/e* —V G€G€)2>

)
Dg(v) = 6%<<er§/€ (\/G/GGQ* — \/GeGe) V GeGe>>

That D} (v) — O comes from the entropy production estimate.



oSetting = = 5 < GLG", — \/GGGG) VGG, we further split D2(v)

€
Into

<<U1|U|2>K€’7€Ee>> + g<<’U’l)\/e(1 — ’/}\/e*”?é”?e*)ze»

€

2

€

DZ(v) = -

+ %<<(’U + vlﬁe’AYe*’AYé’AYE*E€>>

The first and third terms are easily mastered by the entropy production
bound and classical estimates on the tail of Gaussian distributions.

eSending the second term to O requires knowing that

1+ 1ol (VO

2
) is uniformly integrable on [0,7] x K x R3

for the measure dtdzM dv, for each T' > 0 and each compact K C R3.




Asymptotic behavior of the momentum flux

Proposition.  Denoting by N the L2 (M dv)-orthogonal projection on ker £

VGe —1

€

2
Fe(A) = 2<A (rl ) >—2<A‘€%Q(\/Ge, 4 G€)>+O(1)L}Oc(dtdm)

The proof is based upon splitting F<(A) as
VG —1\?\ 2 VGe—1
Fc(A) = <AK€% ( 66 + ; AKE% :

€

2
using the uniform integrability of (1 4 |v]|) (@) and the following
conseqguence thereof

VGe—1 I_lx/GE— 1

€ €

=0
L2 (dtdz;L2((14|v|)Mdv))

lim
e—0




eBy the entropy production estimate, modulo extraction of a subsequence

1
> ( GG, — \/G€G€> g
and passing to the limit in the scaled, renormalized Boltzmann equation

leads to

//R3 g2 ql(v — v4) - W|Mydvsdw = v - Vg = %A - V,u 4+ oddin v
X

oSince Y1 ~ 14, one gets

FE(A) — A(<UK€96’76>) — V(V:qu + (un)T) + O(l)w—LllOC(dtd:c)

(remember that A(u) = u ® u — 5|u|2I), while

(VK geYe) — win w — Llloc(R_|_ x R3)




Strong compactness

eIn order to pass to the limit in the quadratic term A({v_ geve)), ONe needs
strong-L?2 compactness of (VK. GeYe)-

e\elocity averaging provides strong compactness in the x-variable:

(\/ea + Ge

2
—1
) Is locally uniformly integrable on R X R3 x R3
€

\/Ea + Ge —1
€
This implies that, for each T > 0 and each compact K C R3,

(B + v - V) is bounded in L} (R4 x R> x R3)

T
/O /K |<UK696’7€> (t,x+vy) — <’UKeg€fy€>(t, $)|2daj‘dt -0
as |y| — 0, uniformly ine > 0




elt remains to get compactness in the time variable. Observe that

8 P(vi.geve) = P(De(v) — divy Fe(A)) is bounded in L} (dt, W 51)

x,loc

(Recall that De(v) — O while Fc(A) is bounded in L} (dtdx)).

eTogether with the compactness in the z-variable that follows from velocity
averaging, this implies that

P({vg geve) — win LZQOC(dtda:)

eRecall that (v _geve) — win w — leoc(dtdac); we do not seek to prove
that

(VK geve) — w Strongly in leoc(dtda:)




Filtering acoustic waves (PLL+NM, ARMA 2002)

einstead, we prove that

P divs ((vg geve)®?) — Pdivg (u®?) in D'(R% x R3) ase — 0

eObserve that
o Ve (d|v]2 oin Lt (R W VH(R3
€ t</UK€g€/76> + £B< |U|K gefy€> - In loc( —|—7 loc ( ))
—1.1
D (3 |v|% geve) + dive(Zvg geve) — 0in L (R ; Wi " (R3))

as e — 0.

eSetting Ve = (I — P)(vg, geve), the system above becomes

€OtVame + v$<%|v|%{€g€’7€> — 01n Llloc(R+' loc (R3))
: —1,1
68t<%|v|%(eg€7€> T %Afﬁﬂ-e — 01n Llloc(R+' Wise’ (RS))




eStraightforward computation shows that

divz ((Veme)?) = 5Va (IVame® = 2(3101%.967)%) + o(1) 11 (aany

eOn the other hand, because the limiting velocity field is divergence-free,
one has

Veme — 0inw — LZQOC(dtd:c) ase — 0
e Splitting
+2P divy (P(vg, geve) V Vare)

The last two terms vanish with e while the first converges to P divy(u®?)
since P{vg, geve) — w strongly in L2 (dtdx).



The key estimates (as in FG+LSR, Invent. Math. 2004)

Proposition. For each T" > 0 and each compact K C R3, the family
2
(\/G_g_l) (1 + |v|) is uniformly integrable on [0,7] x K x R3 for the

measure dtdx M dwv.

2
ldea no. 1| We first prove that (@) (1 + |v]) is uniformly integrable
on [0,7] x K x R3 for the measure dtdxMduv in the v-variable .

eWe say that ¢e = ¢c(x,y) € L%7y(du(x)dy(y)) is uniformly integrable in
the y-variable for the measure du(x)dv(y) iff

/ sup " |pe(x,y)|dv(y)du(x) — 0 as a — O uniformly in e

v(A)<a



eStart from the formula

£<¢@;¢>:%Q<WI—1AEZ—1

€

)—%Q(¢Ga¢GQ

and use the following estimate (G.-Perthame-Sulem, ARMA 1988)

€ €

1Q(f, f)||L2((1—|—|v|)_1Mdv) < C||f||L2(MdrU)||f||L2((1-|-|v|)Mdv)
to arrive at

(1_0(6)«;—61 >Hm1_ﬂ¢a—el
¢ L2(Mdv) € ¢ L2((14|v]) Mdv)
2
Ge — 1
<0(e) ;2 +0(e) ‘r
b € L2(Mdv)

eThis estimates tells us that —VGg_l stays close to its associated infinitesi-
mal Maxwellian = regularity+decay in v.




ldea no. 2|Use a L1-variant of velocity averaging (FG+LSR, CRAS 2002).

Lemma. Let f,, = frn(x,v) be a bounded sequence in Llloc(dacdv) such

that v - V. fn IS also bounded in Llloc(da:dv). Assume that fy, is locally
uniformly integrable in v. Then

e f, IS locally uniformly integrable (in z, v)

e for each test function ¢ € Lcg,,, RD), the sequence of averages

pa(@) = [ falz, )¢ (v)dv

is relatively compact in L} (dz).



elLet's prove that the sequence of averages pi’i IS locally uniformly inte-
grable (LSR, CPDEs 2002). WLOG, assume that f,, and ¢ > 0.

elLet x = x (¢, z,v) be the solution to

8tX _I_ (U VCBX — 07 X(O,CE,’U) — ]_A(.CC)

Clearly, x(t,z,v) = le(t)(v) (x takes the values 0 and 1 only). On the
other hand,

| Az ()| = /x(t,m,v)dv — /lA(x — tv)dv = L%'

eRemark: this is the basic dispersion estimate for the free transport equa-
tion.




oSetgn(z,v) = fn(z,v)¢(v), and v-Vagn(z,v) = ¢(v)(v-Vzfn(z,v))
hn(z,v) =: gn and hy, are bounded in L3 ,, and gy, is uniformly integrable
N v.

eObserve that (hint: integrate by parts the 2nd integral in the r.h.s.)

/A/gndvdac'Z//x(t) gndvdx_/Ot//hn(m,v)x(s,w,v)d:cdvds

The second integral on the r.h.s. is O(t) sup ||hn|l;1 < € by choosing

t > 0 small enough. For that value of ¢, |A,(t)| — 0 as |A| — 0, hence
the first integral on the r.h.s. vanishes by uniform integrability in v.




