Fields Institute, Toronto – Workshop on Kinetic Theory, March 30, 2004

Kinetic Theory and Simulation of Nonlinear Magnetic Structures

Richard D. Sydora

Department of Physics and Institute for Theoretical Physics University of Alberta, Edmonton Canada

Outline

•Introduction – Nonlinearity and Relaxation in collisionless plasmas

- •Kinetic Model Vlasov and Gyrokinetic Vlasov
- •Discrete Formalism Particle-in-Cell Approach
- •Low Noise Method Delta-F Technique
- •Kinetic Simulations I Linear and Nonlinear Landau Damping
- •Kinetic Simulations II Nonlinear Magnetic Structures
- Summary and Work in Progress

Introduction

-plasmas are a unique medium in that it has a nonlinearity associated with particle trapping

-this has important consequences on the dynamics and transport properties as well as the relaxation toward a new equilibrium

-In this talk, an initial value nonlinear kinetic simulation approach based on the particle-in-cell method, is described to address questions regarding relaxation processes in collisionless plasmas

Kinetic Model – Vlasov Maxwell

Vlasov equation in continuity form

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial}{\partial z} \cdot (\dot{z}f) = 0$$

where
$$z = (\vec{x}, \vec{v})$$
 and $\dot{z} = (\vec{v}, (q/m)[\vec{E} + \frac{\vec{v} \times \vec{B}}{c}])$

Maxwell equations

$$\nabla \times E^T = -\frac{1}{c} \frac{\partial B^T}{\partial t}$$

$$\nabla \times B^T = \frac{1}{c} \frac{\partial E^T}{\partial t} + \frac{4\pi}{c} J^T$$

$$\nabla \cdot E^L = 4\pi\rho$$

where
$$\rho = \int qfd^3v$$
 and $J = \int qfvd^3v$

Finite-Sized Particle-in-Cell

Equations of motion

$$\dot{z}_i = (\vec{v}, (q/m) \int d^n x S(x - x_i) [\vec{E} + \frac{\vec{v} \times \vec{B}}{c}])$$

Maxwell equations

$$\nabla \times E^T = -\frac{1}{c} \frac{\partial B^T}{\partial t}$$

$$\nabla \times B^T = \frac{1}{c} \frac{\partial E^T}{\partial t} + \frac{4\pi}{c} J^T$$
$$\nabla \cdot E^L = 4\pi\rho$$

References:

Birdsall, Langdon,'85 Hockney, Eastwood, '88 Dawson, '83

where

$$\rho = \sum_{i=1}^{N} q_i S(x - x_i)$$
 and $J = \sum_{i=1}^{N} q_i v_i S(x - x_i)$

Gyrokinetic Vlasov: Ordering and Equations $\frac{\omega}{\Omega_{i}} \sim \frac{\rho_{i}}{L} \sim \frac{k_{\parallel}}{k_{\perp}} \sim \frac{e\phi}{T_{e}} \sim \frac{\delta B}{B} \sim O(\epsilon)$ $k_{\perp}\rho_{i} \sim O(1)$

Electrons – drift kinetic

$$\frac{\partial f_e}{\partial t} + (v_{\parallel}\hat{b}^* + \frac{\hat{b} \times \nabla \phi}{B_o}) \cdot \nabla f_e - \frac{e}{m_e} (-\hat{b}^* \cdot \nabla \phi - \frac{\partial A_z}{\partial t}) \frac{\partial f_e}{\partial v_{\parallel}} = 0$$

lons - gyrokinetic

$$\frac{\partial f_i}{\partial t} + (v_{\parallel}\hat{b}^* + \frac{\hat{b} \times \nabla(J_o \phi)}{B_o}) \cdot \nabla f_i + \frac{e}{m_i} (-\hat{b}^* \cdot \nabla(J_o \phi) - \frac{\partial(J_o A_z)}{\partial t}) \frac{\partial f_i}{\partial v_{\parallel}} = 0$$

$$\hat{b}^* = \hat{b} + \frac{\nabla A_z \times \hat{b}}{B_o}$$

$$J_o\phi = <\int \phi(r)\delta(r-R-
ho)dr>$$

Gyrokinetic Particle Simulation

Time integrate using characteristics of gyrokinetic-Vlasov equation

$$F = \Sigma_i^N \delta(\mathbf{R} - \mathbf{R}_i) \delta(\mathbf{v}_{\parallel} - \mathbf{v}_{\parallel i}) \delta(\mu - \mu_i)$$

 $\mu_i = \frac{v_{i\perp}}{2B}$

Gyrokinetic Poisson Equation

$$\frac{T_e}{T_i \lambda_{De}^2} (1 - \Gamma_o) \phi = -4\pi e (n_e - \langle n_i \rangle)$$
$$\langle n_i \rangle = \int 2\pi v_\perp dv_\perp dv_\parallel J_o F_i$$
$$\Gamma_o = I_o (k_\perp^2 \rho_i^2) e^{-k_\perp^2 \rho_i^2}$$

Ampere's Equation

$$\nabla_{\perp}^2 A_z = -\frac{4\pi}{c} \int v_{\parallel} F_e dv_{\parallel}$$

Normal Mode – Kinetic Shear Alfven Wave

$$\omega^{2} = \frac{k_{\parallel}^{2} V_{A}^{2}}{1 + k_{\perp}^{2} \frac{c^{2}}{\omega p e^{2}}} \left[\frac{k_{\perp}^{2} \rho_{i}^{2}}{1 - \Gamma_{o}} + k_{\perp}^{2} \rho_{s}^{2} \right]$$

Gyrokinetic Magnetostatic Model

Introducing a canonical momentum: $p_z = v_z + \frac{q}{m}A_z(\mathbf{R}, t)$ and generalized potential: $\Psi(\mathbf{R}, t) = \phi(\mathbf{R}, t) - v_z A_z(\mathbf{R}, t)$

Equations of motion

$$\frac{d\mathbf{R}_j}{dt} = v_{z_j}\hat{b} - \frac{c}{B}(\frac{\partial\Psi}{\partial\mathbf{R}}\times\hat{b})_j$$

$$\frac{dp_{z_j}}{dt} = -\hat{b} \cdot \left(\frac{q}{m} \frac{\partial \Psi}{\partial \mathbf{R}}\right)_j$$

Ampere's Equation

$$(\nabla_{\perp}^2 - \frac{\omega_{pe}^2}{c^2})A_z = -4\pi |e| \sum_j p_{z_j} S(\mathbf{R} - \mathbf{R_j}) + \frac{\omega_{pe}^2}{c^2} A_z(\frac{n_e}{n_o} - 1)$$

Gyrokinetic Poisson Equation

$$\frac{T_e}{T_i \lambda_{De}^2} (1 - \Gamma_o)\phi = -4\pi e (n_e - \langle n_i \rangle)$$

(Refs. Hahm et al, '88, Naito et al. '95, Sydora, '01, Phys. Plasmas)

Low Noise Method

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial}{\partial z} \cdot (\dot{z}f) = 0$$

Splitting the distribution

$$f(z,t) = f_o(z) + \delta f(z,t)$$
 gives

$$\frac{d\delta f}{dt} = -\frac{df_o}{dt}$$

Equilibrium condition

$$\dot{z}_o \cdot \frac{\partial f_o(z)}{\partial z} = 0$$

Evolution equation for δf

$$\frac{\partial \delta f}{\partial t} + \frac{\partial}{\partial z} \cdot (\dot{z} \delta f) = -\dot{z}_1 \cdot \frac{\partial f_o}{\partial z}$$

(Refs. Kotschenreuther, '88, Dimits, Lee, '93, Sydora, '93, Parker, Lee, '93, Hu, '94)

Delta-F Method

Representation of δf

$$\delta f(z,t) = \sum_i w_i \delta(z-z_i)$$

where the particle weight is

$$w_i = \frac{\delta f}{g}$$

and g is an arbitrary 'marker' distribution

$$g(z,t) = \sum_i \delta(z-z_i)$$

Delta-F Evolution Equation

 δf evolution equation

$$\frac{\partial \delta f}{\partial t} + \frac{\partial}{\partial z} \cdot (\dot{z} \delta f) = -\dot{z}_1 \cdot \frac{\partial f_o}{\partial z}$$

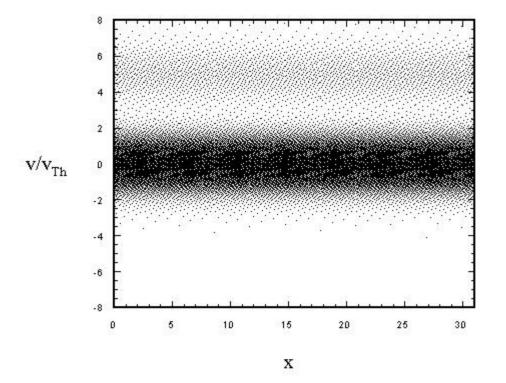
becomes

$$\frac{dw_i}{dt} = -\dot{z}_1 \cdot \frac{1}{g(z,t)} \frac{\partial f_o}{\partial z}|_z$$

and since both f and g satisfy df/dt=0 and dg/dt=0

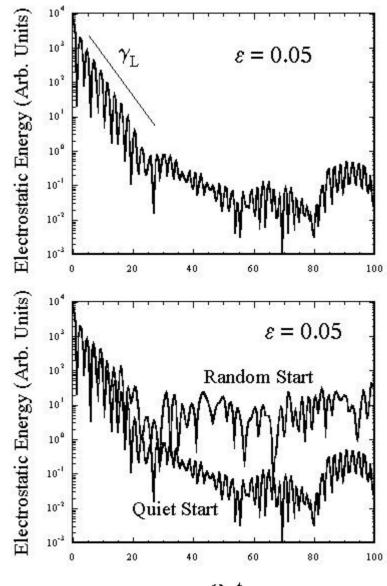
$$\frac{dw_i}{dt} = -\left(\frac{f(0)}{g(0)} - w_i\right) \dot{z}_1 \cdot \frac{1}{f_o(z,t)} \frac{\partial f_o}{\partial z}\Big|_z$$

Kinetic Simulations I – Linear and Nonlinear Landau Damping

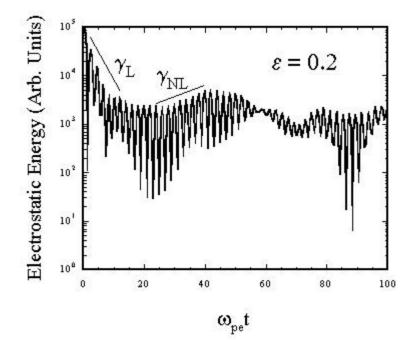


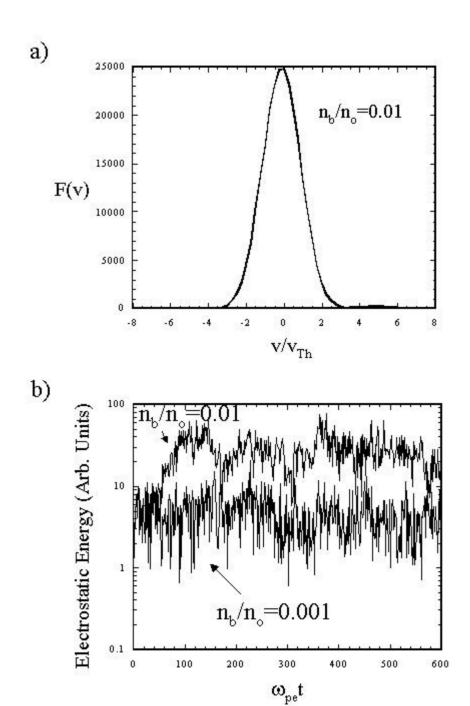
Bit-reversed quasi-random sequence phase space loading

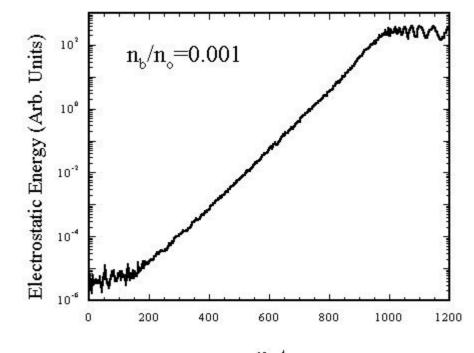
 $\delta f = (1 + \epsilon \cos(kx))f_o$



 $\omega_{\rm pe} t$

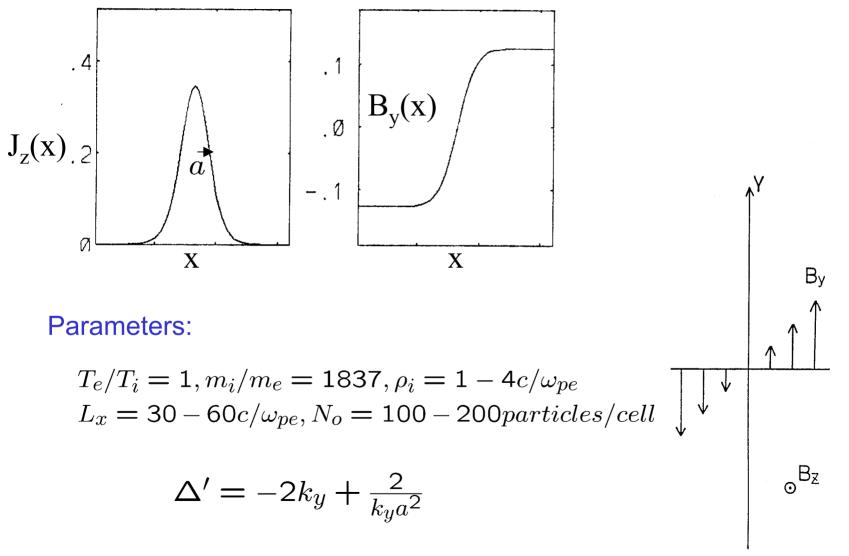




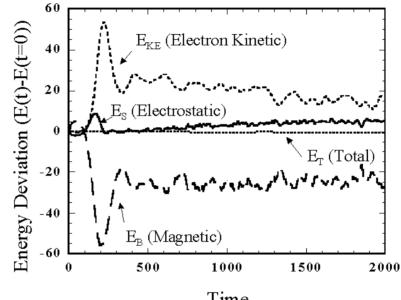


 $\omega_{\rm pe} t$

Kinetic Simulations II – Nonlinear Magnetic Structures

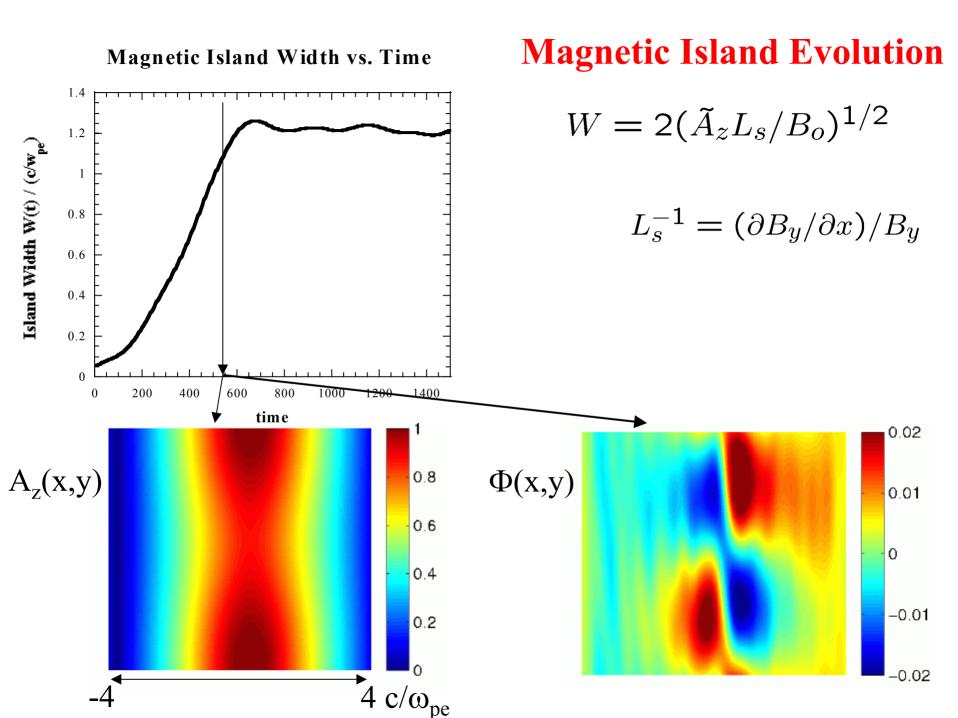


Energy Time Evolution

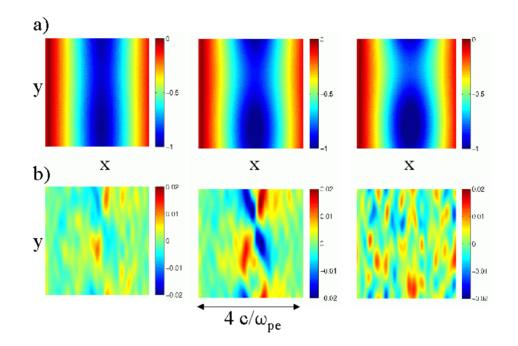


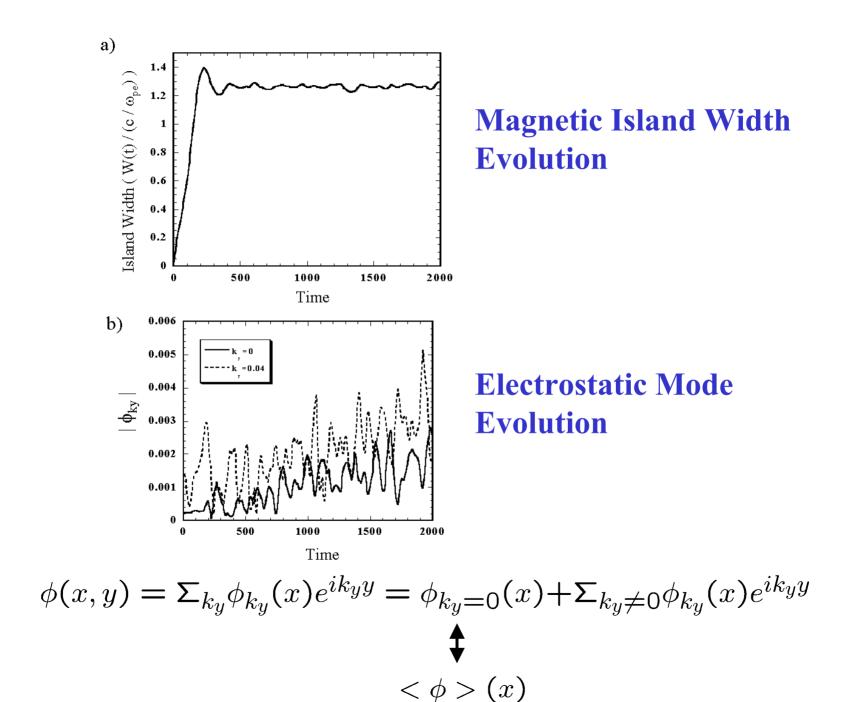
Time

$$\gamma \simeq (\frac{kv_{te}}{L_s})(\frac{1}{\sqrt{\pi}})(\frac{c}{\omega_{pe}})^2 \Delta'$$



Magnetic Flux and Electrostatic Potential





Shear Flow Development

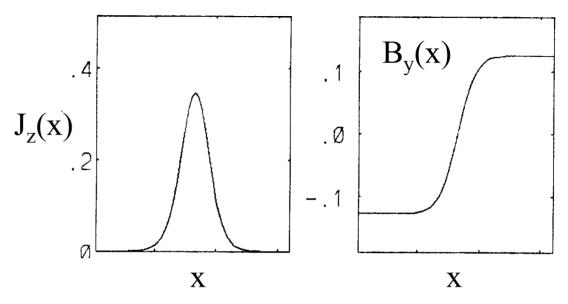
-Radial (x-direction) electrostatic fields build up due to: -ion polarization currents -magnetic island

-Pure E_x gives rise to a y-direction flow $E_x = -\frac{\partial \langle \phi \rangle}{\partial x}$ $V_{E \times B} \sim E_x / B_o$

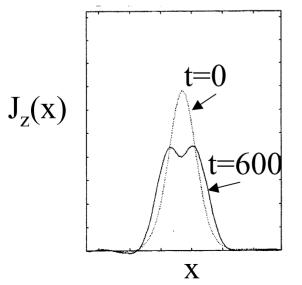
-shear flow when E_v non-uniform $\frac{dV_{E \times B}}{dx}$

which can be unstable (Kelvin-Helmholtz)

Initial Current and B-field Profiles



Current Profile Evolution



Summary and Work in Progress

- -Particle-in-cell method has been described for both the Vlasov and gyrokinetic Vlasov system
- -Issues related to the implementation of a numerical algorithm for this method discussed for the magnetostatic, low-beta collisionless plasmas
- -Results presented for a low noise formulation based on the discrete representation of the perturbed distribution function

- -Work in progress related to
 - \rightarrow long time dynamics of marker distribution
 - \rightarrow Connection with quasilinear theory