
Initiation of angiogenesis

When considering human endothelial cells, the pat-
tern formed is quite different and cannot be explained
by the parabolic model.
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Initiation of angiogenesis

A group of Torino Ambrosi, Gamba, Preziosi et al
proposed a hydrodynamics model



∂
∂tn(t, x) + div(n u) = 0, x ∈ R2,

∂
∂tu(t, x) + u(t, x) · ∇u +∇nα = χ ∇c− µu,

∂
∂tc(t, x)−∆c(t, x) + τc(t, x) = n(t, x).

Keller-Segel model can be viewed as a special case
where the acceleration term

∂

∂t
u(t, x) + u(t, x) · ∇u

is neglected.



Formation of network with hydrodynamic model: den-
sity obtained with50, 100, 400 cells/mm2.
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Kinetic picture: motivation
There are three mitivations for a kinetic picture

Some experiments go in these direction

Unify the two previous models

Being given that an individual can only measure a
concentration of chemoattractant (but not a gradi-
ent, neither compare two concentrations at two dif-
ferent times)... How is it possible to move in the
direction of higher concentration?

The bacterium E. Coli can do that by ’run and tum-
ble’, where the tumble frequency depends upon a
chemoattractant concentration.

Does this really work?



For E. Coli, it has been reported in the 80’s that the mo-
tion is not regular. The bacteria run straight for approx-
imately one second and then turn and choose a new di-
rection.

v
′

x − εv
′

v

Run and tumble movement for E. Coli.

This has lead Alt, Dunbar, Othmer, Stevens, to propose a
kinetic model for the motion
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Kinetic picture: equation

We denote by f(t, x, ξ) the density of cells moving with
the velocity ξ.

They are subject to run and tumble with a rate depend-
ing on the chemoattractant concentration c(t, x).



Kinetic picture: equation

We denote by f(t, x, ξ) the density of cells moving with
the velocity ξ.

They are subject to run and tumble with a rate depend-
ing on the chemoattractant concentration c(t, x).

∂

∂t
f(t, x, ξ) + ξ · ∇xf = K[f ],

K[f ] =
∫

K(c; ξ, ξ′)f(t, x, ξ′)dξ′

−
∫

K(c; ξ′, ξ)dξ′ f(t, x, ξ),

−∆c(t, x) = n(t, x) :=
∫

f(t, x, ξ)dξ,

K(c; ξ, ξ′) = α− k(c(x− εξ′)) + α+ k(c(x + εξ)).

This memory effect is fundamental.



Kinetic picture: equation

∂

∂t
f(t, x, ξ) + ξ · ∇xf = K[f ],

K[f ] =
∫

K(c; ξ, ξ′)f ′dξ′ −
∫

K(c; ξ′, ξ)dξ′ f,

−∆c(t, x) = n(t, x) :=
∫

f(t, x, ξ)dξ,

K(c; ξ, ξ′) = α− k(c(x− εξ′)) + α+ k(c(x + εξ)).

Theorem (Chalub, Markowich, P., Schmeiser)
Assume that 0 ≤ k(c; ξ, ξ′) ≤ C(1 + c) then there is a
GLOBAL solution to the kinetic model and

‖f(t)‖L∞ ≤ C(t)[ ‖f0‖L1 + ‖f0‖L∞]

Open question: Is it possible to prove a bound in
L∞ when w replace the specific form of K by

0 ≤ K(c; ξ, ξ′) ≤ ‖c(t)‖L∞loc
?



Kinetic picture: diffusive scaling

The physical time scale ε allows one to rescale in
space and time the system

∂

∂t
f(t, x, ξ) +

ξ · ∇xf

ε
=
K[f ]

ε2
,

K[f ] =
∫

K(c; ξ, ξ′)f ′dξ′ −
∫

K(c; ξ′, ξ)dξ′ f,

−∆c(t, x) = n(t, x) :=
∫

f(t, x, ξ)dξ,

K(c; ξ, ξ′) = α− k(c(x− εξ′)) + α+ k(c(x + εξ)).

Theorem (Chalub, Markowich, P., Schmeiser) With the
same assumptions, as ε → 0, then

fε(t, x, ξ) → n(t, x), cε(t, x) → c(t, x),

and (n, c) satisfies the Keller-Segel model
∂
∂tn(t, x)− div[D∇n(t, x)] + div(nχ∇c) = 0,

−∆c(t, x) = n(t, x),



Kinetic picture: diffusive scaling

The transport coefficients are given by

D(n, c) = D0
1

(α− + α+)k(c)
,

χ(n, c) = χ0
k′(c)

k(c)
.

The mathematical interpretation is as follows
-) the diffusion D comes from the turning frequency
-) the drift χ comes from the memory effect

If one decides to turn according only to the present
concentration (the higher it is the higher is the rate of
turning) then one does not move towards the higher
concentration.

The delay is fundamental.



Kinetic picture: diffusive scaling

An idea of the proof is as follows. Decompose
K(c; ξ, ξ′) in a symmetric and antisymmetric part

K(c; ξ, ξ′) = KS(c; ξ, ξ′) + εKA(c; ξ, ξ′),

KS(c; ξ, ξ′) = KS(c; ξ′, ξ),

What is the L2 bound ?

∂
∂t

∫
(fε)

2 dx dξ +
∫

KS

ε2
(f − f ′)2dx dξ

=
∫

KA

ε
(f − f ′)(f + f ′)dx dξ

≤
∫

KS

ε2
(f − f ′)2dx dξ +

∫ (KA)2

KS
f2dx dξ

and Gronwall argument proves a local L2 bounds
(because K depends on cε and thus on fε itself) .

And KS is roughly k(cε), while KA converges to
k′(cε)(ξ − ξ′).



Angiogenesis

Angiogenesis describes the development of capil-
lary blood vessels leading to a vascularized tumor.





Angiogenesis: mathematical model

Chaplain, Levine, Sleeman proposed models which
simpler version is:
-) n(t, x) is the density of capillary blood vessels
-) c(t, x) is the concentration of chemoattactant



∂
∂tn(t, x)−∆n(t, x) + div(nχ∇c) = 0, x ∈ Rd,

∂
∂tc(t, x) = −c(t, x) n(t, x),

n(t = 0) = n0(x) ≥ 0, c(t = 0) = c0(x) ≥ 0.

This is close to Keller-Segel model for chemotaxis
but this models makes two major differences:

1) the chemoattractant is no longer emited but con-
sumed



Angiogenesis: mathematical model



∂
∂tn(t, x)−∆n(t, x) + div(nχ∇c) = 0, x ∈ Rd,

∂
∂tc(t, x) = −c(t, x) n(t, x),

n(t = 0) = n0(x) ≥ 0, c(t = 0) = c0(x) ≥ 0.

2) This model has a positive energy

E(t) =
∫
Ω
[n ln(n) + n|∇c|2] ≤ E0,

while Keller-Segel model admits the energy

E(t) =
∫
Ω
[n ln(n)− nc] ≤ E0,

and this quantity has no sign, allowing for blow-up
in Lp.



Angiogenesis: mathematical model



∂
∂tn(t, x)−∆n(t, x) + div(nχ∇c) = 0, x ∈ Rd,

∂
∂tc(t, x) = −c(t, x) n(t, x),

n(t = 0) = n0(x) ≥ 0, c(t = 0) = c0(x) ≥ 0.

2) This model has a positive energy

E(t) =
∫
Ω
[n ln(n) + n|∇c|2] ≤ E0,

As a consequence we have

Theorem (Corrias-Perthame-Zaag)

(i) For c0 ≤ K with finite initial energy and
n0 ln(1 + |x|d+1) ∈ L1(Rd), then there is a
weak solution with finite energy (and the nonlinearities
are well defined).
(ii) For ‖n0‖

Ld/2 small there is a strong solution (that
propagates all Lq norms).



Movement of cells: CONCLUSION

Movment of cells is a important phenomenon re-
lated to tumor developments. It rises several types
of questions in terms of

-) Mathematics: variety of models, the theory is not
complete, especially in 3D,

-) Scientific computation: do the models reproduce
the patterns expected?

-) Modelling: this can assert some biological obser-
vations and lead to simple models


