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Magnetic Connections and Outline

Magnetic topology plays an important role in the global dynamics of high
temperature plasmas.

Within the ideal MHD plasma description, where
E+ixB/c=0, (1)
which leads to
0B =V x (4 x B), (2)

with E (%, 1), B (Z,t) the plasma electric and magnetic field and ﬁga_:’, t) the fluid
plasma velocity, two plasma elements, separated by the vector 6l(Z,t) that are
wmatially connected by a magnetic field line

SIxB=0, at t=0

remain connected by a field line at any subsequent time, since 61 x B is trans-
ported with the plasma (i.e., its Lie derivative vanishes)

— —

8, (8 x B) + (@- V) (81 x B) + (V@) - (6] x B) = 0. (3)

This condition introduces a topological linking (magnetic connection) between
plasma elements that is preserved during the ideal MHD plasma evolution.

Magnetic linking constraints the plasma dynamics by making configurations
with lower magnetic energy, but different topological linking, inaccessible.



Magnetic reconnection partially removes these constrains by allowing the field
lines to decouple locally (i.e., around critical points) from the plasma motion
and to reknit in a different net of connections. This localized breaking of the
connections arises from physical effects neglected in Eq.(1) that are weak all
over the plasma, but are locally enhanced by the formation of small spatial
scales around critical points.

In collisionless magnetic field line reconnection the decoupling between the mag-
netic field and the plasma motion occurs because of finite electron inertia (in
the fluid limit) or thermal effects (in the kinetic plasma description).

However, in the absence of dissipation, the plasma response both in the fluid
and in the kinetic electron treatment admits generalized linking conditions that
are preserved during the process of magnetic reconnection and that in a two-
dimensional configuration take the simple form of Lagrangian invariants.

In this presentation I will focus on

e the role of these generalized linking conditions in collisionless two-dimensional
magnetic field line reconnection and on

e the analytical and numerical results obtained in Refs. [1,2] in the study
of the nonlinear development of magnetic reconnection in the fluid and in the
drift-kinetic limits.

[1] E. Cafaro, et al., Phys. Rev. Lett., 80, 4430 (1998);

D. Grasso, et al., Phys. Rev. Lett., 86, 5051 (2001);

D. Del Sarto, et al., Phys. Rev. Lett., 91, 235001 (2003).
[2] T. Liseikina, et al., submitted to Phys. Plasmas, (2003).



Generalized Magnetic Connections:
an Example

In a collisionless cold plasma model the effect of electron inertia and of the Hall
term in Ohm.s law

— medﬁe 1 g —
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T
c
can be accounted for by introducing the vector fields

Be= B — (mec/e)V x i, = V x A, (5)

(subscripts e denote electron quantities and . is the electron fluid velocity)

and
Ee =F+ meVuz/(2e) + meOyi. /e = —Vipe — 8tffe/c, (6)

where the generalized vector potential /Ye is proportional to the fluid electron
canonical momentum and ¢, to the total electron energy and reduce to vector
potential A and to the electrostatic potential ¢ in the limit of massless electrons.

The vector fields B.(%,t) and E.(Z,t) satisfy the homogeneous Mawxell’s
equations and the ideal Ohm’s law in the form

E+%xi:Q (7)

which leads to the generalized liking condition
8 (81 x B,) + (@, - V) (8l x B,) + (Vii,) - (6] x B,) = 0. (8)

Similarly, all the ideal MHD theorems (magnetic flux conservation, magnetic
helicity conservation, linking number etc,) are recovered by substituting B, for
B and i, for .



Energy conservation
and transitions between magnetic equilibria

The breaking of the magnetic connections allows the system to access configu-
rations with lower magnetic energy.

The possibility of a transition between two magnetic equilibria with different
magnetic energies can be easily conceived in the case of dissipative reconnection,
when the local decoupling between the magnetic field and the plasma motion
is due to electric resistivity,

—_

E—i—%xé:nf, 9)

since the excess magnetic energy that is released in the transition can be trans-
formed into heat.

The possibility of such a transition between two equilibrium states is less ob-
vious in the nondissipative case where energy can only be transferred into me-
chanical or (reversible) internal energy so that one could expect that the system
cannot be ”stopped”in a new stationary equilibrium with a lower magnetic en-

ergy.

Indeed this apparent difficulty is not very different from the one that occurs
in the treatment of Landau damping in Vlasov’s equation for the distribution
function f(Z,v,t). In Vlasov’s equation no energy is dissipated and particle-
points in phase space that lie initially on an f = const hypersurface and that
move along the characteristics of the single-particle Hamiltonian H(Z, ¥, t) lie
at all times on an f = const hypersurface (with the same value of the con-
stant). This amounts to say that, in the absence of collisions, f-connections are
preserved.



Two-dimensional configurations:
connections and Lagrangian invariants

The concept of magnetic connections simplifies in the case of two-dimensional
(2-D) configurations where all quantities depend on z, y and on time ¢ only.

The magnetic configurations of interest here are characterized by a strong,
externally imposed, B, field which is taken to be fixed and does not play the role
of a dynamical variable and by an inhomogeneous shear field in the z-y plane
associated with a current density J(z,y,t) along the z-axis. The field B, plays
a very important physical role in determining the model that is appropriate to
represent the plasma dynamics in the x-y plane. Plasma configurations where
B, is absent display a different behaviour both in the fluid and in the kinetic
description.

In such a 2-D configuration, the magnetic and the electric field can be ex-

pressed as
B = Bye, + Vi(z,y,t) X €, (10)

E = —Vo(z,y,t) + &00(z, y, 1) /c, (11)

where the flux function ¢(z,y,t) is the z-component of the vector potential of
the shear magnetic field and ¢ is the electrostatic potential

Then, the conserved connections between plasma elements moving in the z-y
plane take the form of Lagrangian invariants i.e., can be expressed in term of
scalar quantities that are advected by the plasma motion and are constant along
characteristics.

In the ideal MHD limit this Lagrangian invariant corresponds to the z compo-
nent A, of the magnetic vector potential i.e. to the flux function 1. Plasma
elements that lie initially on an 1) = const curve in the z-y plane and that move
along the characteristics of the stream function ¢ remain at all times on the
same 1) = const curve, i.e., ®-connections are preserved.



Cold fluid finite-mass electrons

If the effect of electron inertia is included (in a cold electron fluid), the La-
grangian invariant corresponds to the z component A, — (mec/e)ue , of the “
vector potential” of the field ée, which is proportional to the z component of
the electron canonical fluid momentum.

In most cases of interest for magnetic reconnection in a configuration with a
strong B, field, the density perturbations can be taken to be small. Then,
the term proportional to the z component w., of the electron velocity can
be rewritten in terms of the z component of the electron current density J (we
disregard the ion motion along field lines). Within this approximation, denoting
as customary A, — (mec/e)u., by F, we have

F(z,y,t) = ¢(z,y,1) — &V (2, y,t) = (12)
bz, y,t) + doJ (z,y,1),
with
J= -V
the z component of the current density and
de = ¢/wpe

the collisionless electron skin depth.

The Lagrangian invariant F' is advected by the stream function ¢ of the elec-
tron motion in the z-y plane which is proportional to the electrostatic potential
according to

oOF
E+[@7F]:O (13)
with the Poisson brackets [f, g] defined by
[f,g]:ez-VfXVg. (14)

This equation arises from the parallel component of Ohm’s equation (4). The
stream function ¢ obeys the equation

oU

ot
where U = V2p is proportional to the plasma fluid vorticity. This equation
arises from the electron continuity equation and quasi-neutrality, after express-

ing the ion perturbed density in terms of the divergence of the ion polarization
drift.



Warm fluid finite-mass electrons

When the effects of electron temperature are included, electron parallel com-
pressibility leads to a modification of the conserved connections and introduces
a new microscopic scale-length

ps = (me/mi) Poge/Q

the so called ion-sound gyro-radius.
When this contribution is included, an anisotropic electron pressure tensor
appears in Ohm’s law! and modifies the structure of the conserved connections.
In this warm fluid finite-mass electron regime, two generalized connections

are conserved which are expressed by the Lagrangian invariants G1(z,y,t) de-
fined by

G+ =Y — d*V*) £ dep, V3o, (16)
that are advected by the generalized stream functions
pr = £ ps/deyp (17)
The new advection equations are
oG
ot [z, Gl = . (18)

Note the formal analogy with the standard 1-D Viasov-Poisson problem for elec-
trostatic Langmuir waves: the set of Egs. (18) has the form of two coupled
1D Vlasov equations, with z and y playing the role of the coordinate and of
the conjugate momentum for the “distribution functions” G. of two “parti-
cle” species with opposite charges in the Poisson-type equation for ¢ and equal
charges in the Yukawa-type equation for v

depSVQ(P = (G+ — G4)/2, (19)
b~ BV = (Gs 1 Gu) /2.

The stream functions ¢+ play the role of the single particle Hamiltonians.

I The effect of this term is to cancel a drift term in the electron inertia contribution, Then Eq.(13) becomes
6tF + [(,O,F] = Qg[Ua 1:[)]



Geometry: 3-Forms

The set of Egs. (18) can be conveniently rewritten in terms of the 3-Forms
equalities

From Egs.(20) it is immediate to see that, on each of the two manifolds G4 =
const, we recover Hamilton’s equations for z and y with Hamiltonians ¢,

dx A\ dy = dyy A dt, (21)

which give the characteristics * = z4(¢) and y = y4+(t) of the Lagrangian
advection of G.

Equivalently, by interpreting = and y as conjugate canonical variables ([z, y] =
1), we can consider (separately) G+ as canonical variables and define appropri-
ate conjugate variables Ky (z,y,t) (i.e., such that [G4, K] = 1) which are also
Lagrangian invariants®.

In this case we can see that the plasma evolution can be described geometrically
as the area-preserving evolution of two Lagrangian meshes, G, Ky and G_, K_
respectively, that are advected along the characteristics described by the stream
functions ¢4 (z,y,t). These stream functions determine the dynamics of the
system through Eqs.(16,19).

2K obey the equations (; K+)VGy — (0;G)+ VKL = V.

9



Dynamics: Energy functional

The dynamics of the plasma configuration is governed by the conserved energy
functional H (¢, p) 3

H(p, ) = [ dz (VY[ + [Vol* + d2J* + 0U?) /2. (22)

The first term [ d?z|V1)|?/2 represents the magnetic energy in the shear field,
[ d*z|Vp|?/2 the plasma fluid kinetic motion, fd?zd?J?/2 the energy of the
ordered electron kinetic energy along field lines and [ d*z?U?/2 the work done
by the parallel electron compression. This last term disappears in the limit of
a cold electron fluid (g5 — 0) *.

Note that the magnetic energy and the plasma fluid kinetic motion, contain
first derivatives or ¥ and ¢ while the ordered electron kinetic energy and the
work done by the parallel electron compression contain second derivatives, i.e.,
one can expect that the former two dominate at large scales and the latter two
at small spatial scales.

Note in addition that, in the absence of dissipative effects, there are no char-
acteristic dissipative scalelengths in Egs. (18) that can limit the nonlinear
formation of small spatial scales.

3This energy functional is related to the possibility of describing Eqgs. (18) in the form of Hamiltonian field
equations with non-canonical variables and degenerate non-canonical Poisson brackets. The kernel of these
Poisson brackets is given by an infinite set of Casimirs defined as [ d?zC.(G+) with Cy arbitrary smooth
functions.
P.J. Morrison, Phys. Fluids, 27, 886 (1984);
T.J., Schep, et al., Phys. Plasmas, 1, 2843 (1994);
B.N., Kuvshinov, et al., Phys. Letters A, 191, 296 (1994).

4By redefining the energy functional H by adding the appropriate combination of Casimirs, we can rewrite
H in the form H(Gy, 1) = — [ d?z (Grp4 + G_p_)/2.
B.N., Kuvshinov, et al., J. Plasma Physics, 59, 727 (1998)
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1 Nonlinear Reconnection Regimes

We are interested here in the nonlinear evolution of collisionless reconnection
instabilities which arise because of the initial inhomogeneous current distribu-
tion in the z-y plane. This procedure is different from the one where forced
magnetic reconnection is studied in configurations where magnetic flux is forced
from their boundaries (in our case reconnection is forced by the initial condi-
tions).

As mentioned above, the decoupling between the plasma motion and the

magnetic field occurs around critical points that correspond, in the 2-D config-
urations under examination, to the zeros of the shear field i.e., to the zeros of
Vi(z,y,t).
As is customary for magnetic configurations of interest for laboratory plasmas,
we consider initial configurations where critical points have degenerated into a
critical line, i.e., initial configurations that depend only on one coordinate (say
z) and where the shear field vanishes along a line (the null line):

¢0 == ’gbo(:l?), With 8¢0($)/8$ = O|x:0.

The early development (linear phase) of the reconnection instabilities in such
configurations has been thoroughly examined in the literature in terms of thresh-
old conditions for the onset of the instabilities, growth rates and role of the
boundary layer at the null line. In this layer a large current density cumulates
and the topology of the shear field starts to be changed with the formation of
magnetic islands bounded by magnetic separatrices.

The interest here is to examine the nonlinear phase of a collisionless recon-
nection instability and the eventual saturation of the island growth.

11



As a more technical remark I recall here that the threshold condition of the

reconnection instabilities in null line configurations is controlled by the value of
a parameter, usually denoted by A’, which “measures” both the total current
that the instability drives in the boundary layer and the magnetic energy flux
that is convected by the instability flows towards the null line.
In the case of collisionless reconnection instabilities, where the decoupling be-
tween the magnetic field and the plasma occurs because of electron inertia, the
regime that is of greatest interest is the so called large A’-regime (d.A’ of order
unity).

The early nonlinear phase of the development of the reconnection instability
in the cold electron limit was examined numerically and analytically in
M. Ottaviani and F. Porcelli, Phys. Rev. Lett., 71, 3802 (1993)

and shown to lead to a narrow current layer along the initial null line and
to a super-exponential phase with a reconnection rate, as measured by the
reconnected flux 41 () at the island X-point, larger than in the linear phase.

In order to investigate the long term nonlinear evolution of a fast growing
(large deA’) reconnection instability produced by electron inertia in a sheared
magnetic equilibrium configuration with a null line Eqgs.(18) were integrated
numerically in
E. Cafaro, et al., Phys. Rev. Lett., 80, 4430 (1998);

D. Grasso, et al., Phys. Rev. Lett., 86, 5051 (2001);
D. Del Sarto, et al., Phys. Rev. Lett., 91, 235001 (2003).

12



Numerical Results

In this series of simulations periodic conditions were taken along y and the
configuration parameters were chosen such that only one mode can be linearly
unstable.

For reference we mention that for the results that will be presented here, the typical mesh sizes
are N, = 2048 and N, = 512.

Random perturbations were imposed on the equilibrium configuration v,(z) = —L/[2 cosh?® (z/L)]
in a simulation box with L, = 2L, = 4rL, taking d. = 3/10L and p,/d. in the range 0-1.5.

The accuracy of the integration was verified by testing the effects of numerical dissipation on
the conservation of the energy and of the Lagrangian invariants.

Formation of small spatial scales in the nonlinear phase

The Lagrangian invariants Gy differ from the flux function v by the term
d?J £ d.o,U which has small coefficients but involves higher spatial derivatives.
As shown in Cafaro et al., magnetic reconnection proceeds unimpeded in the
nonlinear phase because of the development near the X point of the magnetic
island of increasingly small spatial scales that effectively decouple ¥ from GL.

In Hamiltonian regimes the formation of such scales does not stop at some finite
resistive scalelength.

This corresponds to the formation of increasingly narrow current and vorticity
layers.

Because of the conserved GG+ connections, the spatial localization and structure
of these layers depends on the value of o5/d.

13



Mixing of the Lagrangian invariants and island growth saturation

As mentioned above, in the reconnection model adopted, magnetic energy
J d%z|V|? is transformed, in principle reversibly, into two forms of kinetic en-
ergy, one, [d*z|V|?, related to the plasma motion in the z-y plane and one,
J d*zd?J?, to the electron current along z and, for o, # 0, into electron parallel
compression [ d*zo*U?.

The last two energies involve quantities with higher derivatives.

Being the system Hamiltonian, it is not a priori clear whether a reconnection
instability can induce a transition between two stationary plasma configurations
with different magnetic energies, as is the case for resistive plasma regimes where
the excess energy is dissipated into heat.

Taking os/de ~ 1, in Grasso et al. it was shown that, in spite of energy
conservation, this transition is possible at a “macroscopic” level.

A new coarse-grained stationary magnetic configuration can be reached be-
cause, as the instability develops, the released magnetic energy is removed at
an increasingly fast rate from the large spatial scales towards the small scales
that act a perfect sink.

This allows the saturation of the island growth.

Similarly, the constraints imposed by the conservation of the G+ connections
cease to matter at a macroscopic level.

The advection of the two Lagrangian invariants G is determined by the stream
functions .. The winding, caused by this differential rotation type of advec-
tion. makes G- increasingly filamented inside the magnetic island, leading to
a mixing process.

These filamentary structures of G+ do not influence the spatial structure of ¥
which remains regular.

14



Gy, 1=50 Y, 1=80

Fig.1 Laminar mixing: contour of G at ¢ = 50, 65,80 (right column) and of ¥, J and U (left column
from top to bottom) at ¢ = 80 for ps/d. = 1.5.

The analogy with the Bernstein-Greene-Kruskal (BGK) solutions of the Vlasov
equation obtained in

C. Lancellotti and J.J. Dorning, Phys. Rev. Lett. 81, 5137 (1998).
G. Manfredi, Phys. Rev. Lett. 79, 2815 (1997).
M. Brunetti, F. Califano, F. Pegoraro, Phys. Rev. E62, 4109 (2000).

for the nonlinear Landau damping of Langmuir waves was discussed in Grasso
et al.

15



Onset of a secondary Kelvin Helmoltz instability: turbulent versus
laminar mixing

The advection, and consequently the mixing, of the Lagrangian invariants can
be either laminar or turbulent depending on the value of gg/d.

F, =90 v, 1=112

Fig.2 Turbulent mixing: contour of F at ¢t = 90,103,112 (left column) and of ¥, J and U (right
column from top to bottom) at t = 112 for ps/d. = 0.

The transition between these two regimes was shown in Del Sarto et al. to
be related to the onset of a secondary Kelvin Helmoltz-type (K-H) instability
driven by the velocity shear of the plasma motions that form because of the
development of the reconnection instability.

16



Whether or not the K-H instability becomes active before the island growth
saturates, determines whether a (macroscopically) stationary reconnected con-
figuration is reached and affects the redistribution of the magnetic energy.

Cold electrons

In the cold electron limit, gs/d. = 0, the system of Egs. (18) becomes degenerate
and the generalized connections are determined by a single Lagrangian invariant

F.

Initially, F' is advected along a hyperbolic pattern given by the stream function
© which has a stagnation point at the O-point of the magnetic island.

This motion leads to the stretching of the contour lines of F' towards the stag-
nation point and to the formation of a bar-shaped current layer along the equi-
librium null line, which differs from the cross shaped structure found in the
initial phase of the reconnection instability for g4/d, # 0.

Subsequently, F' contours are advected outwards in the z-direction. At this
stage F' starts to be affected by a K-H instability that causes a full redistribution
of F.

In this phase the spatial structure of F' is dominated by the twisted filaments
of the current density which spread through the central part of the magnetic
island.

The contours of the vorticity U exhibit a well developed turbulent distribution
of monopolar and dipolar vortices, while those of i) remain regular although
they pulsate in time.

17



The energy balance shows that part of the released magnetic energy remains
in the form of plasma kinetic energy corresponding to the fluid vortices in the
magnetic island and that an oscillatory exchange of energy persists

(see J. Bergmans, et al., Phys. Rev. Lett., 87, 195002 (2001).)

between the plasma kinetic energy and the electron kinetic energy corresponding
to the pulsations of the island shape.

This turbulent evolution of the nonlinear reconnection process persists in the
non degenerate, finite electron temperature, case where the two Lagrangian
invariants G+ determine the generalized linking conditions

However, as the ratio g4/d, is increased, i.e. as the electron temperature effects
become more important, the onset of the K-H instability occurs later during the
island growth and its effect on the current layer distribution becomes weaker.

For gs/d. ~ 1, no sign of a secondary instability is detectable during the time
the island takes to saturate its growth.

In the transitional regime, the advection pattern and the current layer struc-
tures exhibit an intermediate behaviour. Initially, G. are advected in opposite
directions with a differential rotation, as is the case for ps/d. = 1. At later
times they acquire features characteristic of the evolution of F' in the degener-
ate ps = 0 case and their advection becomes K-H unstable leading to an almost
turbulent distribution.

18



1.1 Need for a kinetic electron description

The above results show that the conservation of the generalized connections in
the reconnection process leads to the formation of current and vorticity layers
with spatial scales that, in the absence of dissipation, becomes increasingly
small with time.

In this nonlinear phase of the development of the reconnection instability, the
fluid approximation may become inconsistent inside the layers. The generalized
connections and the constraints that they exert on the plasma dynamics apply
to the case of a fluid plasma, where fluid elements can be defined and the linking
property between fluid plasma elements can be formulated.

It thus becomes important to understand what s the role of the topological in-
variants in a kinetic electron description where e.g., the canonical momenta of
the single electrons do not simply add up to give the fluid conserved Lagrangian
invariant F' discussed above.

The role of a finite electron temperature on the topological properties of the
plasma is already evident from the above results, since the contribution of the
parallel electron compressibility introduces two new Lagrangian invariants G4
and two different streaming functions . instead of F' and ¢, and consequently
changes the nonlinear evolution of reconnection in a significant way.

19



Drift kinetic formulation

Let F(z,y,v),t) be the drift-kinetic electron distribution function, where vj
is the electron velocity along field lines. It is convenient to adopt as kinetic

variable the electron canonical momentum, divided by the electron mass, pj,
defined by °

p| ==, (23)
where we recall that v)| is the coordinate in velocity space.

Since we consider two dimensional (z independent) fields and perturbations, pj
is a particle constant of the motion.

In the z,y, p), t variables the drift kinetic equation for the distribution func-
tion
fy,p,t) = F(z,y,v), )
reads

of

57 Tlo— vy = ¥%/2, f] = 0 [ogin, ], (24)

with orin = @ — ¢p)/c — P*/2.
H.J. de Blank, Phys. Plasmas, 8, 3927 (2001);

G. Valori, Fluid and kinetic aspects of collisionless magnetic reconnection, ISBN 90-9015313-6,
Print Partners Ipskamp, Enschede, the Netherlands (2001).

Note that in Eq.(24) the spatial derivatives are taken at constant p; and not at
constant vj.
For each fixed value of pj, the time evolution of f corresponds to that of a
Lagrangian invariant “density” advected by the velocity field obtained from
the generalized stream function @g;,.
The advection velocity field is different on each p = const foil.
In this formulation the drift distribution function f obeys a advection equation
that, at fixed p), has the same algebraic structure as those adopted in the fluid
approach.

df Ndx A dy = df A\ dpg, A dt. (25)

Thus f consists of an infinite number of Lagrangian invariants, each of them
advected with a different velocity, that take the place of the two fluid invariants
Gy.

®We adopt the following normalizations ¢ = ep/mevd,,, ¢ = eY/mecvphe, z,y = z/L,y/L, t =
tmevfhec/LzeBo, P =D /Vthe, where L is a characteristic length and the other symbols are standard

20



The fluid quantities are defined in terms of distribution function f as follows
/def(fU;y;pH;t) = n(xayat)a (26)

/dp||p||f($7yap||at) = [U(iﬁ,y,t) - ’(p(!l?,y,t)} n(:v,y,t),

[ dpylpy — w(@,y,) + (2,5, f (o 2,9, 8) = Ty,

where n(z,y,t) and u(z,y,t) are the normalized electron density and fluid ve-
locity and IIj(z,y,t) is the (z,2) component of the pressure tensor. ~ Then
Ampere’s equation reads

d>V*y) = nu, (27)

and, as in the fluid case, the ion equation of motion together with quasineu-
trality give
(n —no) = p; V0, (28)

where ng = ng(x) is the initial normalized density and the density variations
are supposed to remain small.
The above system of equations admits a conserved energy functional

/dwdy [d2(VY)? + p2(V)? + nu® + II )] /2 = const (29)

Aside for the normalization, the main difference between these energy terms
and the corresponding ones derived in the fluid case is in the expression of the
electron compression work, as natural in a kinetic theory, the pressure tensor
11} cannot be expressed in terms of the lower order moments of the distribution
function.

21



Electron equilibrium distribution function

The stationary solutions of Eq.(24) are of the form f = f(p)), @kin). Using the
identity for the single particle energy

vii/2 = ¢ = D}j/2 = Prin, (30)

we can write a stationary distribution function that depends only on the particle
energy as f = f (pﬁ /2 — ©kin), while the well known static (¢g = 0) Harris pinch
equilibrium distribution is given by®

f = foexp [—(p — 2¢nin) — 20" (31)

In order to have a less inhomogeneous plasma configuration we can add a
pedestal (Maxwellian) distribution function of the form

frea = fooexp [—(pf} — 2¢rin)]-

The corresponding self consistent vector potential ¢y(z) is given by ¢g(z) =
(1/v*) In(coshz) and the shear magnetic field has the standard hyperbolic
tangent distribution.

®In velocity variable v)| this distribution corresponds to Fo exp [—(v| — v*)? — 2v*¢)] and leads to a particle
and current density of the form n = ngexp (—2v*y) and j = —ngv* exp (—2v*¢), where j is normalized on
neevire and v* is the standard parameter related to the diamagnetic fluid motion.
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Evolution of the p; = const foils

We write the distribution function with f(z,y,t,p)) as

f(,y,t.my) = [ dpo(By — p))f (@, 9,1, ))-

This is a foliation of the electron distribution function in terms of the infinite
number of Lagrangian tnvariants obtained by taking the distribution function f
at fized electron canonical momentum.

Within the drift-kinetic equation each pj-foil evolves independently, while all
foils are coupled through Maxwell’s equations.

The total number of particles in each foil is constant in time.

In the initial configuration, the spatial dependence of each pj-foil is given for the case of the
Harris distribution by

exp (2@rin) = exp (—2¢p) — ¢°) = exp [p} — ))(2)?], (32)

where 0 (x) = v)|(¥,p) = p; + (1/v*) In(coshz). For negative values of p; the maximum of
the argument of the exponent in Eq.(32) is located at

z = Farccoshlexp (—v"p))]

i.e. the foil is localized in space within two symmetric bands, respectively to the right and to
the left of the neutral line of the magnetic configuration. For positive values of pj all the foils
are centered around z = 0.

23



Nonlinear twist dynamics of the foils

In the adopted drift kinetic framework the p)-foils take the role of the Lagrange
invariants G4 of the fluid plasma description.

In this perspective, the dynamics of the foils can be predicted by looking at the
form of stream function ¢y, inside each foil.

The advection velocity can be written as
& x V(e —p —9*/2) = (33)
€, X Vi — (p||+¢) Vi x €,

which represents the particle E x B drift and their free motion along field lines.
At fixed p| = p)| we see that depending on the sign of ¥ 4 p| = 9)(z), the ad-
vection velocity field takes two counter oriented rotation patterns, reminiscent
of those that advect G_ (G) in fluid theory.

In the equilibrium configuration where all quantities are function of ¥ = ¢(x)
and ¢ = 0, this advection corresponds to the free particle motion along ¥ =
const surfaces inside each foil.

However, when the instability starts to move the plasma along the z axis and
Op/0y # 0, the portions of the foil where 9 > 0 or where ¢ < 0 will bend
in opposite directions. This will lead to a distortion and twist of the foils and
to their eventual spatial mixing, analogously to the mixing of G in the fluid
theory.
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Numerical results

For a Harris equilibrium the evolution of the reconnection instability is characterized by three
dimensionless parameters that can be expressed as the dimensionless ion sound ion sound gyro-
radius ps and the electron skin depth d. from Poisson’s and Ampere’s equations respectively,
and ng. In fact, when d. and ng are given, v*, and thus 1)y, are determined implicitly by the
choice of L.

The size of the simulation box along y has been chosen equal to 47 such that the parameter A’
is positive only for the lowest order mode corresponding to k, = 1/2 so that only the &k, = 1/2
mode can be linearly unstable. The simulation box is 40 long in the x direction, with periodic
boundary conditions in y and first type boundary conditions in z.

We have taken fixed p; = 1 and
d. = 1,v* = 4, corresponding to 1y = 1/4,n9 = 1/16,
de =1,0" =2 (=> 1y =1/2,n9=1/4),
de = 0.5,0" =2 (=> by = 1/2,n9 = 1/16).

Smaller values of v* correspond to larger instability growth rates i.e., to a faster evolving
instabilities where the saturation of the island growth is reached sooner.

The growth rate increases with d, faster than linearly.

The instability saturation is shown for the case with d, = 1 and v* = 4.

Fig.3 Contour plots (top) and 3D plots (bottom) of the p| = constant foils of electron distribution
function at ¢ = 100 for p = —1.5,-0.5,0.5, 1.5 from left to right in the interval —3 < z < 3 around

the neutral line. Note the different scales in the vertical axes of the 3D plots.
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The evolution of the p|-foils f(z,y,p),t), restricted to the interval -3 < z <3
around the neutral line, is shown at ¢ = 100 for p = —1.5,-0.5,0,0.5,1.5,
together with the contour plots of the stream function ¢y;, in -y for the same
values of p| and the same interval in x.

Foils corresponding to negative values of p;| were initially localized in two sym-
metric bands to the left and to the right of the neutral line and are thus modified
by the onset of the reconnection instability only in their portion that extend
into the reconnection region.

On the contrary foils corresponding to positive values of p| were initially local-
ized around x = 0 and are thus twisted by the development of the reconnection
instability. The contour plots of the stream function ¢, corresponds to a
differential rotation in the z-y plane. The sign of the rotation is opposite for
positive and for negative values of p;. The mixing caused by this differential
rotation of the py-foils is evident.

Fig.4 Contour plots of the kinetic stream function ¢y, for the same values of the parameters

and of p| as in Fig. 3.
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2 Conclusions

We have analyzed 7 the role of the Lagrangian invariants in the fluid and in the
drift kinetic case.

This has allowed us to establish a clear link between the fluid and the kinetic
regimes of the reconnection instability since the (two) fluid invariants and the
(infinite) drift-kinetic invariants evolve in time in an analogous fashion.

In particular we have shown that the mixing of the Lagrangian invariants in
z-y space leads to the formation of smaller and smaller spatial scales both in
the fluid and in the kinetic regimes. The corresponding energy transfer towards
increasingly smaller scales allows in both cases for the saturation of the magnetic
island growth.

Finally, within the range of parameters explored in the simulations discussed in the present
paper, we have not evidenced any onset of a secondary instability.

This result is fully consistent with the fluid simulations that show that the onset of the Kelvin-
Helmoltz instability is impeded by increasing the electron temperature.

77 Foliation and mixing of the electron drift-kinetic distribution function in non-linear two-dimensional mag-
netic reconnection” by T. Liseikina, F. Pegoraro and E. Yu. Echkina, submitted for publication in Phys. of
Plasmas.
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