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I. Introduction

In natural and fusion plasmas, collisions usually negligible.

The description of the intermediate-scale dynamics in terms of usual
magnetohydrodynamics is thus questionable.

In most situations, direct numerical integration of the Vlasov-Maxwell equations
are beyond the capabilities of the present day computers.

This suggests the development of a reduced description that retains most of
the aspects of a fluid description but includes realistic approximations of the
pressure tensor and wave-particle resonances.

This model should be simple enough to allow numerical simulation of 3D
dispersive MHD turbulence with realistic dissipation. The approximations must
however remain controlled to allow a precise prediction of the nonlinear dynamics
leading to coherent structures such as magnetic holes or shocklets.

The media under consideration are the magnetosheath, the solar wind as well
as the warm phase of the ISM.



II. Previous works:

• Closure can only be rigorously justified in presence of collisions, with an
expansion in the Knudsen number.

• “N-moments methods”, that derive from Grad’s work (1958), assume that
the distribution function (d.f.) remains close to an equilibrium d.f., the
deviation being expanded in a polynomial in terms of particle velocities.
Good for the weakly collisional case but limited to small deviations.

• In the collisionless case, fluid behavior can only result from collective
constraints. In presence of a strong magnetic field, Chew et al (1956)
proposed the “double adiabatic laws” or CGL equations for the parallel and
perpendicular gyrotropic pressure components. The equations are usually
closed in the adiabatic regime (∇ ·Q = 0). Conditions of validity analyzed
by Belmont and Rezeau (1987).



• Closures that reproduce linear results from kinetic theory: depend on ground
state and often presented in Fourier space. Effective polytropic indices
[Belmont and Mazelle (1992)].

• Gyrofluids (used for fusion plasmas): equations for hydrodynamic moments
obtained from gyrokinetic equations. Able to describe FLR effects
(i.e. valid in a range of scales extending up to the ion gyroradius and
beyond), but written in a local coordinate system and rather complicated.

• Landau fluids [Hammett and co-authors (1990s)]: built to account for wave-
particle resonance effects. Full electromagnetic case presented by Snyder,
Hammett and Dorland (1997). In its original form, limited to the very large
scales (Hall effect and finite Larmor radius corrections neglected).

• P. and Sulem (2003) have revisited Landau fluids and benchmarked these
equations for parallel Alfvén waves and magneto-sonic waves in the case
where the Hall term and finite Larmor radius corrections are relevant.



III. Outline of the method:

• Goal: Simple monofluid model able to reproduce the weakly nonlinear
dynamics of MHD (magnetosonic and Alfvén) waves, whatever their
propagation direction and thus in particular the dynamics of kinetic Alfvén
waves (KAW) with kρL ≤ 1, with the most relevant kinetic effects, i.e.
Landau damping and FLR corrections, and a generalized Ohm’s law.

• Starting point: Vlasov-Maxwell (VM) equations

• Small parameter: ratio between the ion Larmor radius and the typical
(smallest) wavelength. The fields amplitudes are also supposed to be small.

• Main problem: Exact hydrodynamic equations are obtained by taking
moments of the VM equations. The hierarchy must however be closed
and the main work resides in a proper determination of the pressure tensor.

• Assumptions: Simple geometry (no curvature drift), homogeneous basic
state with bi-Maxwellian distribution functions (could be relaxed for some
aspects of the problem).



IV. The equations:

• From Vlasov-Maxwell equations, derive a hierarchy of moment equations for
each particle species r:

density ρr = mrnr

∫
frd

3v

hydrodynamic velocity ur =
∫

vfrd
3v∫

frd3v
pressure tensor Pr = mrnr

∫
(v − ur)⊗ (v − ur)frd

3v
heat flux tensor Qr = mrnr

∫
(v − ur)⊗ (v − ur)⊗ (v − ur)frd

3v.

∂tρr +∇ · (urρr) = 0

∂tur + ur · ∇ur +
1

ρr

∇ · Pr −
qr

mr

(e +
1

c
ur × b) = 0

∂tPr +∇ · (urPr + Qr) + [Pr · ∇ur +
qr

mrc
b× Pr]

S
= 0

where [A]S = A + ATr



A monofluid approximation is possible when the dynamics is weakly nonlinear:

∂tρ +∇ · (uρ) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇ · p− 1

c
j × b = 0

where u =
1

ρ

∑
r

ρrur, ρ =
∑

r ρr and j =
c

4π
∇× b.

On has p =
∑

r

pr where the pressure tensor pr (and also qr) is defined in terms of the

deviation from the barycentric velocity. [pr = Pr − ρr(u− ur)⊗ (u− ur)] .

Up to subdominant terms one has:

∂tpr +∇ · (upr + qr) + [pr · ∇u +
qr

mrc
b× pr]

S
= 0

Induction equation with Hall-effect and electron pressure:

∂tb−∇× (u× b) = −mic

qi
∇× [

1

4πρ
(∇× b)× b− 1

ρ
∇ · pe].



Two problems:
(a) Heat fluxes require a closure approximation.
(b) Small timescales in the equation for P. −→ separation between CGL

equations with flux and FLR corrections

• (a) Closure
Reductive perturbative expansion on the Vlasov-Maxwell equations associated
with the various types of MHD waves provides asymptotically exact
(possibly nonlocal) relations between the heat fluxes and lower
order moments, from which we infer general closure assumptions.
(Rogister (Phys. Fluids 14, 2733 (1971)))

Advantages
Relative simplicity: allows to neglect non relevant terms. In contrast with

usual linearization it isolates the dynamics of individual waves (small amplitude
with a typical wave length much larger than the ion inertial length).

Rigor: expansion in terms of a single small parameter.
Bonus: allows to test the equations in the weakly nonlinear regime.

This method allows to obtain relations between heat fluxes and lower order
moments.



Which wave does one have to consider?

It turns out that oblique Alfvén waves are the worst case scenario. This is
because in this case the distinguished limit imposes a scaling where the Hall
term and non-gyrotropic heat flux components enter at dominant order.

The equations obtained in this case are also valid for magnetosonic waves
and parallel Alfvén waves. Some terms become subdominant in these situations.

The reductive perturbative expansion allows to only keep those subdominant
terms that play a role in the context of oblique Alfvén waves.

In the following we shall present the ideas on the simpler case of parallel
Alfvén waves and briefly discuss the additional terms arising for oblique AW.



Scaling argument (within a reductive perturbative expansion):

When the propagation coordinate is rescaled by ε1/2, the distinguished limit
associated with each type of wave is obtained as follows:

? Parallel Alfvén waves: bx ∼ by = O(ε1/4) and bz −B0 = O(ε1/2)

? Oblique magnetosonic waves: bx ∼ bz −B0 = O(ε) and by = O(ε3/2),

? Oblique Alfvén waves: bx ∼ bz −B0 = O(ε) and by = O(ε1/2).

• From CGL eqs., gyrotropic heat fluxes comparable to pressure perturbations:
? of order ε1/2 for parallel Alfvén waves
? of order ε for oblique Alfvén and magnetosonic waves.

• Non-gyrotropic heat fluxes involve a space derivative arising with the 1/Ωr

factor, and thus typically behave not like [p(0)
r v] but rather like [p(0)

r
vA
Ωr
∇v].



Modeling the heat fluxes:

The gyrotropic and non-gyrotropic contributions to the heat fluxes qr are
separated by writing qr = qG

r + qNG
r with

qG
ijk,r = q‖rb̂ib̂j b̂k + q⊥r(δij b̂k + δikb̂j + δjkb̂i − 3b̂ib̂j b̂k),

In the long-wave asymptotics
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=
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The plasma response function writes

Wr ≡ W(cr) =
1√
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∫
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√
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2
cre

−c2r/2H,

where cr = λ/vth,r, vth,r =

√
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(0)
‖r /mr and H is the Hilbert transform.



Extension to more general situations:

• cr replaced by − 1
vth,r

∂t∂
−1
z .

• equations for the heat fluxes replaced by

q
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∂t∂
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with homographic approximants (to finally get a 1st order initial value pb)
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The coefficients qi
‖ and qi

⊥ are chosen in a way that ensures the correct asymptotic behavior of the heat

fluxes in both isothermal (cr ¿ 1, Wr ≈ 1 − c2
r +

√
π
2crHξ, q
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‖r = −

√
8
πvth,rn(0)HξT

(1)
‖r , q
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and adiabatic (cr À 1, Wr ≈ −1/c2
r − 3/c4

r, heat fluxes are negligible) limits.
This reduces to use appropriate Pade approximants for Wr.



Heat flux closure

(
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with p‖r = nT‖r and p⊥r = nT⊥r.

These equations can also be viewed as a linearized version of the exact equation for the

heat fluxes with source terms arising from an appropriate closure on the next moment (r). See

Snyder, Hammett and Dorland (1997).

For Oblique AW, these equations are modified



One has in general:
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• (b) Equations for the pressures

It reads

pr × b̂− b̂× pr = kr

where

kr =
1

Ωr

B0

|b| [
dpr

dt
+ (∇ · u)pr +∇ · qr + (pr · ∇u)

S
].

This equation involves a fast time scale of order Ω−1
r except for the part of the pressure

tensor that lies in the kernel of the operator on the l.h.s. It is spanned by (I− b̂⊗ b̂) and

b̂⊗ b̂.

We thus split pr = pG
r + πr as the sum of an element of the kernel

pG
r = p⊥r(I− b̂⊗ b̂) + p‖rb̂⊗ b̂

and of a non-gyrotropic component πr = pr where, for any (3× 3) rank two tensor a,

a = a− 1

2
a : (I− b̂⊗ b̂)(I− b̂⊗ b̂)− (a : b̂⊗ b̂)̂b⊗ b̂.

Thus tr πr = 0 and πr : b̂⊗ b̂ = 0.



Applying the trace operator and the contraction with b̂⊗ b̂ on both sides of the pression

equation gives equations for the gyrotropic pressures

∂tp⊥r +∇ · (u p⊥r) + p⊥r∇ · u− p⊥r b̂ · ∇u · b̂ +
1

2
(tr∇ · qr − b̂ · (∇ · qr) · b̂)

+
1

2
(s1r − s2r + s3r) = 0

∂tp‖r +∇ · (u p‖r) + 2p‖r b̂ · ∇u · b̂ + b̂ · (∇ · qr) · b̂ + s2r − s3r = 0.

CGL eqs. with heat fluxes and coupling to non-gyrotropic components

s1r = tr (πr · ∇u)S , s2r = (πr · ∇u)S : b̂⊗ b̂ , s3r = πr : d
dt (̂b⊗ b̂).

For weak perturbations of an equilibrium state with uniform density, gyrotropic pressures and

uniform magnetic field, s1r, s2r and s3r are subdominant at all the relevant orders of the

present analysis.

Both gyrotropic and non-gyrotropic heat flux components a priori contribute to the gyrotropic

components of ∇ · qr.



Finite Larmor radius corrections:

The other part of the pressure satisfies

πr × b̂− b̂× πr = kr

Because of the proximity of b̂ and ẑ (along ~B0), it is convenient to rewrite

πr × ẑ − ẑ × πr = k′r, where k′r = kr − (πr × (̂b− ẑ)− (̂b− ẑ)× πr).

We split

k′r = κr + L(πr) with κr =
1
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dpG

r
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+∇ · qr + (pG

r · ∇u)S]

where

dpG
r

dt
= (p‖r − p⊥r)

d
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1

|b|2(
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dt
⊗ b + b⊗ db

dt
− 2

|b|
d|b|
dt
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(computed using the induction equation)

L(πr) =
1

Ωr
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|b| [
dπr

dt
+ (∇ · u)πr + (πr · ∇u)S]− (πr × (̂b− ẑ)− (̂b− ẑ)× πr)

¿ πr in a weakly nonlinear regime.



This enables perturbative calculations.

One expands

κr = χ
(1)
r + χ

(2)
r + · · ·

πr = π
(1)
r + π

(2)
r + · · ·

that obey
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• me/mi ¿ 1: only non-gyrotropic corrections due to ions are relevant.

• Leading order π(1)
p reproduces Yajima’s (1966) result

π
(1)
p xx = −π

(1)
p yy = −p⊥p

2Ωp

(∂yux + ∂xuy)

π
(1)
p zz = 0

π
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(1)
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Ωp

[2p‖p∂zuy + p⊥p(∂yuz − ∂zuy)].

• χ
(2)
r (needed to decribe oblique and kinetic Alfvén waves) involves the non-gyrotropic part

of ∇ · qr (to be modelized) and also nonlinear terms such as the contributions originating

from the last term of L(π(1)
r ) that it is important to retain in order to prevent appearence

of spurious nonlinearities (making the problem ill-posed) in the reduced equation for weakly

nonlinear long oblique Alfvén waves.



Next order contribution given by

π
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p × ẑ − ẑ × π

(2)
p = L(π
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Denoting by an overline the projection on the subspace orthogonal to (I − b̂ ⊗ b̂) and b̂ ⊗ b̂, and by a double
overline the projection on the subspace orthogonal to (I− ẑ ⊗ ẑ) and ẑ ⊗ ẑ, one has
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S
).



Another modelization of the non-gyrotropic heat fluxes is here necessary. They contribute

to χ(2)
p in the form

∇ · qp =
p⊥p

2
(∇⊥ ⊗ udp − (ẑ ×∇⊥)⊗ (ẑ × udp))
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S
,

where we introduce the diamagnetic drifts ud,r =
c

nq|b|2b×∇ · pr.



They also enter the gyrotropic pressure equations which obey

∂tp⊥r +∇ · (u p⊥r) + p⊥r∇ · u− p⊥r b̂ · ∇u · b̂ +∇ · (̂b q⊥r) + q⊥r∇ · b̂
+

1
2
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Energy conservation

Is usual energy E =
∫

(ρ
u2

2
+

b2

8π
+ p⊥ +

1
2
p‖)d3x conserved by the above

mono-fluid model?
The delicate contributions originate
? from the electron pressure gradient in the induction equation
?? from the second order non-gyrotropic pressure corrections.

? The electronic pressure that affects the magnetic field evolution only in the case of pressure

anisotropy, contributes in a long wave theory at the level of the linear dispersion relation. In

this limit, it can thus be replaced by
1

ρ0

∇ · p⊥e −
v2

∆e

B2
0

∇ · (b⊗ b), that does not contribute

to the energy budget.

?? Concerning the non-gyrotropic pressure contributions, while the leading order π
(1)

preserves

energy, the effect of π
(2)

is still unclear.

In fact, this contribution also only arises in the linear dispersion relation of oblique and kinetic

Alfvén waves. In the case it affects the energy budget, this effect will be subdominant.



V. Validation

Landau-fluid description of long dispersive parallel Alfvén waves

The long wave reductive perturbative expansion performed on the Landau-fluid model

reproduces the KDNLS equations derived from Vlasov-Maxwell up to the replacement in the

transverse pressure fluctuations of the plasma response function W by the corresponding two-

or four-pole approximants.
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Figure 1: Contributions pR (left column) and pI (right column) to the perpendicular pressure
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• For magnetosonic waves with propagation angle α, the Landau damping rate is (assuming
me
mp
¿ β ¿ Te

Tp
)

γ = −
√

β

√
π

8

√
me

mp

sin2 α

cos α

(ω2 − β cos2 α)2 + β2 cos4 α

(2ω2 − β − 1)(ω2 − β cos2 α)
,

an expression identical to that found by a direct derivation from the Vlasov-Maxwell equations.

The long-wave equation is KdV+damping term.

• For Alfvén waves at finite angle of propagation , finite Larmor radius corrections of order 1/Ω2
p

have to be retained. The governing equation is linear and reads, assuming me
mp
¿ β ¿ Te

Tp
,

(adiabatic protons and isothermal electrons) and β ¿ 1 (ξ: stretched coordinate along the

propagation)

∂τ

by

B0

+
v3

A

2Ω2
p

[
cos3 α

sin2 α
+

√
β

√
π

2

√
me

mp

cos
3
α( tan

2
α +

1

tan2 α
)H]∂ξξξ

by

B0

= 0,

• For Kinetic Alfvén waves (cos2 α ¿ β),

∂τ

by

B0

+
v3

A

2Ω2
p

cos α[− β(1 +
3

4

T (0)
p

T
(0)
e

) +
√

β

√
π

2

√
me

mp

H]∂ξξξ

by

B0

= 0.

The dispersion and damping coefficients agree with classical results

(Akhiezer et al. 1975, Hasegawa and Chen 1976).



VI. Conclusion

Collisionless dissipation (Landau damping) of dispersive MHD waves can be described using a

monofluid model.

The model thus reproduces the correct dispersion relation for MHD waves for any value of the

β parameter and for any angle of propagation, provided the wavelength is large compared to

the ion inertial length.

Secondary instabilities as well as the resulting nonlinear dynamics are also captured.

For example small-amplitude oblique Alfvén waves obey a linear dynamics while parallel Alfvén

waves are governed by the KDNLS equation.



Perspectives

• Benchmark the model by comparison with gyrokinetic simulations and possibly Vlasov-

Maxwell simulations.

• In particular explore the nonlinear stage of parametric instabilities.

• Modelisation of coherent structures (magnetic holes and shocklets) observed in the solar

wind and magnetosheath.

• Simulation of dispersive Alfvén wave turbulence:

? Generation of KAW at small scales: importance of higher-order FLR corrections that

are to be described in a computationally manageable way.

? Self-consistent computation of turbulent dissipation

? Self-consistent determination of the fast wave spectrum: important for cosmic ray

scattering

? Possible emergence of coherent structures

• Treat electrons as a Landau fluid in hybrid simulations.

• Explore the possible description of nonlinear Landau damping (see Prakash and Diamond, Nonlinear

Proc. Geophys. 6, 161 (1999)).
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