Applications of the Nonlinear Schrödinger Equation to Optical Fiber Communications

William L. Kath

Department of Applied Mathematics
McCormick School of Engineering
Northwestern University

The key component of high-speed communications

Single mode optical fibers^[1]:

- \circ inner core diameter $\approx 2-5\,\mu\mathrm{m}$
- \circ outer cladding diameter $\approx 100 \, \mu \text{m}$
- \circ wavelength $\approx 1.3 1.5 \,\mu\text{m}$
- weakly guiding:

$$\frac{n_{\rm core} - n_{\rm clad}}{n_{\rm clad}} \ll 1$$

Mathematical description of signals in an optical fiber

Nonlinear Schrödinger (NLS) equation^[1, 2]:

$$\frac{\partial u}{\partial z} = -\frac{i}{2}k''(\omega)\frac{\partial^2 u}{\partial t^2} + i\gamma |u|^2 u,$$

- \circ *u* is signal envelope, $|u|^2$ is power
- $\circ \ \gamma = \omega n_2 / c A_{\mbox{eff}}$ is nonlinear coefficient (units m⁻¹W⁻¹)
- n_2 = nonlinear index coeff.; A_{eff} = effective mode area,

$$A_{\text{eff}} = \frac{\left[\iint |F(x,y)|^2 dx dy\right]^2}{\iint |F(x,y)|^4 dx dy},$$

where F(x, y) is transverse mode shape

 $\circ k''(\omega)$ is the dispersion coefficient

The first term in the NLS equation: dispersion

 $k''(\omega)$ is the dispersion coefficient

$$\frac{\partial u}{\partial z} = -\frac{i}{2}k''(\omega)\frac{\partial^2 u}{\partial t^2}$$

2nd derivative makes pulse widen (disperse) with distance since different frequencies have different group velocities

 $k''(\omega) > 0$, normal/defocusing; $k''(\omega) < 0$, anomalous/focusing

The second term in the NLS equation: nonlinearity

$$\frac{\partial u}{\partial z} = i\gamma |u|^2 u$$

- Intensity-dependent phase rotation
- Creates new signal frequencies:

Balance of dispersion + nonlinearity produce solitons

Dimensionless NLS (anomalous dispersion):

$$i\frac{\partial u}{\partial z} + \frac{1}{2}\frac{\partial^2 u}{\partial t^2} + |u|^2 u = 0$$

soliton — nonlinearity cancels dispersion; robust to disturbances:

$$u = A \operatorname{sech}[A(t - T - \Omega z)]e^{i[\Omega t + \frac{1}{2}(A^2 - \Omega^2)z + \varphi]}$$

- o made practical by laser (1960), & making of low-loss fiber
- NLS exactly solvable by the inverse scattering transform:
 Zakharov and Shabat, 1971 [3]
- NLS proposed for fibers by Hasegawa and Tappert, 1973^[4]
- experimental verification by Mollenauer, 1983^[5]

Insight from more complicated NLS solutions

Soliton interaction: wavelength-division-multiplexing (WDM) and collision-induced timing shifts

Bound N-soliton: model of pulse compression

The global significance of the NLS equation

Optical Fibre Submarine Systems North Atlantic

Fields Institute 2004

Transmission system length scales [6]

Fields Institute 2004

The elements of an optical transmission system

WDM, wavelength-division multiplexing PMD, polarization mode dispersion ASE, amplified spontaneous emission noise FEC, forward error correction BER, bit-error ratio

Note here amplitude shift keying is shown

Some examples of transmission formats

Non-return-to-zero (NRZ):

- work with low powers and small dispersion
- lots of engineering experience

Return-to-zero (RZ) and/or solitons:

- soliton only when nonlinearity and dispersion balance
- lower-powered pulses: chirped return-to-zero (CRZ)

Other formats: differential phase-shift keying,...

Impairments in optical communication systems

Solitons:

- with loss/amplification, soliton collisions become inelastic
 - ⇒ permanent frequency shifts, resonant four-wave mixing

NRZ and CRZ:

- need to compensate for accumulated dispersion
- overcoming noise with larger signal powers ⇒ nonlinearity

All formats:

- o amplifier noise ⇒ finite signal-to-noise ratio
- o net dispersion + noise ⇒ Gordon-Haus timing jitter
- o random birefringence ⇒ polarization-mode dispersion

Nonlinearity, dispersion, noise and polarization effects

Loss is compensated by amplifiers

- Erbium-doped fiber amplifiers (EDFAs), periodically spaced (every 50 km or so), are ideal at 1.55 μ m
- o power loss $\alpha = 0.24$ dB/km; $\Gamma = (\alpha/20) \ln 10$

Raman (distributed) amplification now also used

Side effects due to the amplifiers

Transformed NLS (due to Hasegawa and Kodama): [2, 7-9]

$$\frac{\partial \bar{u}}{\partial z} = \frac{i}{2} \frac{\partial^2 \bar{u}}{\partial t^2} + i a^2 (z/\epsilon) |\bar{u}|^2 \bar{u}$$

- $\circ a^2(z/\epsilon)$ due to power variations
- \circ Can be replaced by its average (H&K), giving NLS propagation for the mean of \bar{u} (to leading order)

But,

- Amplifiers amplified spontaneous emission (ASE) noise produces jitter in soliton parameters A, φ , Ω and T
- Jitter leads to transmission errors

The NLS equation with additive noise [10, 11]

$$i\frac{\partial u}{\partial z} + \frac{1}{2}\frac{\partial^2 u}{\partial t^2} + |u|^2 u = \sum f_n(t)\delta(z - nz_a).$$

Here, f(t) is Gaussian white noise added at each amplifier

$$\langle f_i(t)f_j^*(t')\rangle = \frac{(G-1)^2}{G\ln G}\frac{\eta_{\rm sp}T_w\gamma}{|\beta''|}\delta(t-t')\delta_{ij}.$$

G = amplifier gain; η_{sp} = spontaneous emission factor; T_w = pulse width; γ , β'' = nonlinear, dispersion coefficients

(Actually, noise must be a version with finite spectral extent)

Amplitude jitter example

Fields Institute 2004

Timing jitter example

Fields Institute 2004

Filtering to reduce timing jitter [12-17]

Add frequency reference to stop growth of jitter

$$F(\omega) \approx F(0) + \frac{1}{2}F''(0)\omega^{2} + \dots \Leftrightarrow F(0) - \frac{1}{2}F''(0)\frac{\partial^{2}}{\partial t^{2}} + \dots$$

$$\Rightarrow \frac{\partial u}{\partial Z} = i\frac{1}{2}\frac{\partial^{2}u}{\partial T^{2}} + i|u|^{2}u + \alpha u + \beta\frac{\partial^{2}u}{\partial T^{2}}$$

- o filtering acts like diffusion ⇒ Ginzburg-Landau equation
- extra gain needed to compensate diffusive loss
- solitons stabilized to frequency and amplitude fluctuations, but direct timing noise still present

Need for stable pulses (in fiber loop): fiber lasers

Dispersion management

Periodic concatenation of fibers with alternating dispersion

Dispersion map = specific choice of parameters $(d_{1,2}, z_a, z_{1,2})$

Dispersion management (continued)

NLS equation with rapidly varying dispersion

$$\frac{\partial u}{\partial z} = \frac{i}{2}d(\frac{z}{z_a})\frac{\partial^2 u}{\partial t^2} + g(\frac{z}{z_a})|u|^2 u$$

For all formats:

- low average dispersion reduces Gordon-Haus jitter
- high local dispersion reduces four-wave mixing

For non-soliton pulses:

- dispersion compensation
- compression/expansion cycle reduces peak nonlinearity

For solitons:

power enhancement further reduces Gordon-Haus timing jitter

Fields Institute 2004

Analytical/numerical methods for dispersion management

The same factors which make dispersion management so useful also make it so much harder to analyze

One has a PDE with large and rapid perturbations

Analytical/numerical methods:

- Lie transform, multiple scales or averaging methods [18-26]
- Variational or moment methods [27-30]
- Numerical simulations [31-34]

Reviews: [35-39]

Breathing of the full dispersion-managed (DM) pulse

DM solitons recover their profile stroboscopically (up to a phase)

Non-soliton pulses have non-periodic evolution

Radiation loss of DM solitons [40]

Dispersion-managed NLS without loss and gain:

$$\frac{\partial u}{\partial Z} = \frac{i}{2}\sigma\left(\frac{z}{\epsilon}\right)\frac{\partial^2 u}{\partial T^2} + i|u|^2 u$$

Here σ is $O(1) \Rightarrow$ weak dispersion management

Formal asymptotic expansion; can show for small ϵ that

$$I_r = |u|_{t \to \pm \infty}^2 \sim \frac{\pi}{4\epsilon} |C|^2 \exp(-2\pi^{3/2}/\epsilon^{1/2})$$

where C is an O(1) constant determined numerically

Thus, radiation loss is beyond all orders

Results of refined numerical simulations for 2-step maps

Comparison between theory and simulations

Fields Institute 2004 25

Coefficient C shows radiation nulls for some parameters

 $\epsilon=0.1$: triangles down; $\epsilon=0.2$: triangles up; $\epsilon=0.4$: + signs theory: solid line

Simulations showing radiation nulls

 $\sigma_1 - \sigma_2 =$ 2 (solid), 7.75 (dotted), 12.5 (dashed) for $\epsilon = 0.4$

Non-periodic chirped return-to-zero (CRZ) pulses

Characterize using RMS pulse parameters (moments)

• pulse energy:
$$E = \int_{-\infty}^{\infty} |u|^2 dt$$
 (constant)

• temporal width:
$$\tau^2 = \int_{-\infty}^{\infty} t^2 |u|^2 dt / E$$

• spectral width:
$$(\Delta \omega)^2 = \int_{-\infty}^{\infty} |u_t|^2 dt / E$$

o chirp:
$$b = \int_{-\infty}^{\infty} t \operatorname{Im}\{u^*u_t\} dt / (E\tau^2)$$

• average power:
$$P = \int_{-\infty}^{\infty} |u|^4 dt / E$$

Can obtain and study ODEs for these parameters [27-29, 41-43]

CRZ pulse dynamics [44]

Optimize chirp+transmission to minimize pulse width at receiver Can show analytically that nonlinearity reduced by $O(\log s/s)$ [26]

Basic polarization effects

Coupled NLS equations for E-field envelope [45]:

$$i\frac{\partial \mathbf{u}}{\partial z} + \Delta \boldsymbol{\beta} \, \mathbf{u} + i\Delta \boldsymbol{\beta}' \frac{\partial \mathbf{u}}{\partial t} + \frac{1}{2} \frac{\partial^2 \mathbf{u}}{\partial t^2} + \mathbf{N}(\mathbf{u}) = 0$$

$$\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix}, \qquad \mathbf{N}(\mathbf{u}) = \begin{bmatrix} (|u|^2 + \frac{2}{3}|v|^2)u + \frac{1}{3}v^2u^* \\ (|v|^2 + \frac{2}{3}|u|^2)v + \frac{1}{3}u^2v^* \end{bmatrix}$$

Coupled NLS (CNLS) equations

$$i\frac{\partial \mathbf{u}}{\partial z} + \mathbf{\Delta}\boldsymbol{\beta}\,\mathbf{u} + i\mathbf{\Delta}\boldsymbol{\beta}'\frac{\partial \mathbf{u}}{\partial t} + \frac{1}{2}\frac{\partial^2 \mathbf{u}}{\partial t^2} + \mathbf{N}(\mathbf{u}) = 0$$

$$\mathbf{\Delta}\boldsymbol{\beta} = b \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}, \quad \mathbf{\Delta}\boldsymbol{\beta}' = b' \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$$

- \circ $\Delta \beta$ is phase velocity difference. $b = ||\Delta \beta||$
- \circ $\Delta \beta'$ is group velocity difference
- \circ θ is angle between the coordinate & fiber principal axes
- these terms vary randomly with distance and over time
 polarization-mode dispersion (PMD).

Polarization-mode dispersion

birefringence: phase, group velocity polarization dependent

Two kinds of birefringence variations: small- and large-scale:

- small-scale from internal fiber perturbations
 (e.g., from core cross-section fluctuations from manufacturing imperfections, stress variations from differential cooling, etc.)
- large-scale from macroscopic effects (e.g., bending and twisting)

Phase and group birefringence

Birefringence = velocity difference

- Phase birefringence produces random rotation of the polarization state
- Group birefringence produces random pulse splitting (differential group delay, DGD; fast vs. slow axes)

Typical length scales:

- Random birefringence: 10's or 100's of meters
- Dispersion and nonlinearity: 100's of kilometers

Resolve linear evolution over short distances first; interaction with dispersion and nonlinearity later

Manakov-PMD equations [46]

Use fundamental solution U for part of linear evolution,

$$i\frac{\partial \boldsymbol{U}}{\partial z} + \boldsymbol{\Delta \beta} \, \boldsymbol{U} = 0$$
 ,

and transformation $u = U\Psi$ to remove fast polarization rotation

$$\Rightarrow i\frac{\partial \mathbf{\Psi}}{\partial z} + \frac{1}{2}\frac{\partial^2 \mathbf{\Psi}}{\partial t^2} + \frac{8}{9}|\mathbf{\Psi}|^2 \mathbf{\Psi} = -i\widehat{\mathbf{\Delta}}\widehat{\boldsymbol{\beta}}'\frac{\partial \mathbf{\Psi}}{\partial t} - \widehat{\boldsymbol{N}},$$

where

$$\widehat{\Deltaoldsymbol{eta}'} = oldsymbol{U}^\dagger \Deltaoldsymbol{eta}' \, oldsymbol{U}$$
 ,

and \hat{N} represents the fluctuating part of the nonlinearity

Manakov-PMD equations, continued

- \circ Under reasonable assumptions, $\langle \widehat{\Delta \beta'} \rangle = 0$ and $\langle \widehat{N} \rangle = 0$
- Thus, mean evolution obeys the Manakov equation,

$$i\frac{\partial \mathbf{\Psi}}{\partial z} + \frac{1}{2}\frac{\partial^2 \mathbf{\Psi}}{\partial t^2} + \frac{8}{9}|\mathbf{\Psi}|^2\mathbf{\Psi} = 0$$

- Manakov equation also completely integrable by the IST
- If only one polarization present, reduces to scalar NLS
- Full analysis requires dealing with coupled system and perturbing random birefringence fluctuations

Wavelength-division-multiplexing

Recall explicit N-soliton solution:

$$u(z,t) = \sum_{j,k=1}^{N} (Q^{-1})_{jk},$$

$$Q_{jk} = \frac{\exp[-i\chi_j - S_j] + \exp[-i\chi_k + S_k]}{A_j + A_k + i(\Omega_j - \Omega_k)},$$

$$S_j(z,t) = A_j(t - T_j - \Omega_j z),$$

$$\chi_j(z,t) = \Omega_j t - \frac{1}{2}(\Omega_j^2 - A_j^2)z + \Phi_j.$$

4N soliton parameters: A_j , Ω_j , T_j and Φ_j .

Wavelength-division multiplexing:

$$|A_j + A_k| \ll |\Omega_j - \Omega_k|$$
 for $k \neq j$

Several frequency channels simultaneously travel across the fiber.

WDM interactions and four-wave mixing

Soliton interactions in lossless fibers

- WDM regime: well-separated frequency channels
- Expand the N-soliton solution in powers of

$$\max_{j,k=1,\ldots,N} |A_j + A_k|/|\Omega_j - \Omega_k|$$

- $u^{(0)}(z,t) = \sum_{j=1}^{N} u_j(z,t)$, superposition of N one-soliton solutions.
- To leading order, WDM solitons traverse each other as linear pulses.
- \circ $O(\epsilon)$: permanent timing shifts due to collisions, corresponding to a temporary shift of the soliton frequency.
- Soliton interactions are pairwise to leading order.

Soliton interactions and four-wave mixing

 $O(\epsilon^2)$: four-wave mixing terms, at $N^2(N-1)/2$ frequencies (not necessarily distinct):

$$\Omega_{klj} = \Omega_k + \Omega_l - \Omega_j$$
, $k, l \neq j$.

FWM terms are produced during soliton interactions, and their energy flows back into the solitons after the collision.

Four-wave mixing in real fibers [47]

2-soliton collision with loss and amplification:

Similar problem independent of transmission format.

Four-wave mixing in real fibers (continued)

Solid line: the four-wave mixing amplitude as a function of z. Dashed line: the corresponding amplitude in the lossless case.

Four-wave mixing in real fibers

• Two-soliton collision: $u = u_s + u_{\text{fwm}} + \cdots$

$$u_s = u_1 + u_2 = \text{solitons}$$
, with frequencies Ω_1 , Ω_2 $u_{\text{fwm}} = u_{112} + u_{221} = \text{FWM terms}$, located at Ω_{112} , Ω_{221} :

$$\Omega_{112} = 2\Omega_1 - \Omega_2$$
 $\Omega_{221} = 2\Omega_2 - \Omega_1$

Growth of anti-Stokes FWM:

$$i\frac{\partial u_{221}}{\partial z} + \frac{1}{2}\frac{\partial^2 u_{221}}{\partial t^2} = -g(z)u_2^2 u_1^*$$

Resonance condition:

$$\frac{2n\pi}{\langle d\rangle z_a} = \Delta\Omega^2 + \frac{1}{2}A^2$$

Similar phenomenon for all transmission formats [48]

Dispersion management reduces growth of sidebands

The interactions are sometimes almost better than for pure NLS! Large, rapid phase variations responsible for FWM reduction ^[50] Collision-induced timing jitter theory is much more involved ^[51-53]

Fields Institute 2004

Summary

- Optical fibers are the backbone for today's communications
- NLS equation provides the fundamental framework for many models
- Much more work has been done with NLS than with Manakov
- Perturbations almost always involved:
 loss/gain, noise, dispersion management, polarization effects...
- The rich structure of NLS leads to lots of interesting behavior
- New technologies continue to produce new mathematical questions

$$\frac{\partial u}{\partial z} = \frac{i}{2} \frac{\partial^2 u}{\partial t^2} + i|u|^2 u$$

References

- [1] Govind P. Agrawal. Nonlinear Fiber Optics. Academic Press, San Diego, 2nd edition, 1995.
- [2] Akira Hasegawa and Yuji Kodama. *Solitons in Optical Communications*. Oxford University Press, Oxford, 1995.
- [3] V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, **34**, pp. 62–69, 1972.
- [4] A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett., **23**, pp. 142–145, 1973.
- [5] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers, Opt. Lett., **8** #5, pp. 289–291, 1983.
- [6] C. R. Menyuk, Application of multiple-length-scale methods to the study of optical fiber transmission, J. Eng. Math., **36**, pp. 113–136, 1999.
- [7] A. Hasegawa and Y. Kodama, Guiding-center soliton, Phys. Rev. Lett., 66 #2, pp. 161–164, 1991.
- [8] A. Hasegawa and Y. Kodama, Guiding-center soliton in optical fibers, Opt. Lett., **15** #24, pp. 1443–1445, 1990.
- [9] J. P. Gordon and L. F. Mollenauer, Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission, J. Lightwave Technology, **9** #2, pp. 170–173, 1991.
- [10] H. A. Haus, Quantum noise in a solitonlike repeater system, J. Opt. Soc. Amer. B, **8** #5, pp. 1122–1126, 1991.
- [11] D. Marcuse, An alternative derivation of the Gordon-Haus effect, J. Lightwave Technology, 10 #2, pp. 273–278, 1992.
- [12] K. J. Blow, N. J. Doran, and D. Wood, Suppression of the soliton self-frequency shift by bandwidth-limited amplification, J. Opt. Soc. Amer. B, **5** #6, pp. 1301–1304, 1988.

- [13] Y. Kodama and S. Wabnitz, Reduction of soliton interaction forces by bandwidth limited amplification, Elect. Lett., **27** #21, pp. 1931–1933, 1991.
- [14] A. Mecozzi, J.D. Moores, H.A. Haus, and Y. Lai, Soliton transmission control, Opt. Lett., **16** #23, pp. 1841–1843, 1991.
- [15] Y. Kodama and A. Hasegawa, Generation of asymptotically stable optical solitons and suppression of the Gordon-Haus effect, Opt. Lett., **17** #1, pp. 31–33, 1992.
- [16] P. V. Mamyshev and L. F. Mollenauer, Stability of soliton propagation with sliding-frequency guiding filters, Opt. Lett., **19** #24, pp. 2083–2085, 1994.
- [17] A. Mecozzi, Long-distance soliton transmission with filtering, J. Opt. Soc. Amer. B, **10** #12, pp. 2321–2330, 1993.
- [18] A. Hasegawa and Y. Kodama, Guiding-center soliton in fibers with periodically varying dispersion, Opt. Lett., **16** #18, pp. 1385–1387, 1991.
- [19] I. R. Gabitov and S. K. Turitsyn, Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation, Opt. Lett., **21** #5, pp. 327–329, 1996.
- [20] T. Georges and B. Charbonnier, Reduction of the dispersive wave in periodically amplified links with initially chirped solitons, Photonics Tech. Lett., 9 #1, pp. 127–129, 1997.
- [21] T. S. Yang and W. L. Kath, Analysis of enhanced-power solitons in dispersion-managed optical fibers, Opt. Lett., **22** #13, pp. 985–987, 1997.
- [22] Y. Kodama and A. Maruta, Optimal design of dispersion management for a soliton-wavelength-division-multiplexed system, Opt. Lett., **22** #22, pp. 1692–1694, 1997.
- [23] T.-S. Yang, W. L. Kath, and S. K. Turitsyn, Optimal dispersion maps for wavelength-division-multiplexed soliton transmission, Opt. Lett., **23** #8, pp. 597–599, 1998.
- [24] M. J. Ablowitz and G. Biondini, Multiscale pulse dynamics in communication systems with strong dispersion management, Opt. Lett., **23** #21, pp. 1668–1670, 1998.

- [25] M. Wald, I. M. Uzunov, F. Lederer, and S. Wabnitz, Optimization of soliton transmissions in dispersion-managed fiber links, Opt. Commun., **145** #1-6, pp. 48–52, 1998.
- [26] M. J. Ablowitz, T. Hirooka, and G. Biondini, Quasi-linear optical pulses in strongly dispersion-managed transmission systems, Opt. Lett., **26**, pp. 459–461, 2001.
- [27] J. N. Kutz, P. Holmes, S. G. Evangelides, and J. P. Gordon, Hamiltonian dynamics of dispersion-managed breathers, J. Opt. Soc. Am. B, **15** #1, pp. 87–96, 1998.
- [28] T. I. Lakoba, J. Yang, D. J. Kaup, and B. A. Malomed, Conditions for stationary pulse propagation in the strong dispersion management regime, Opt. Commun., **149** #4-6, pp. 366–375, 1998.
- [29] S. K. Turitsyn, I. Gabitov, E. W. Laedke, V. K. Mezentsev, S. L. Musher, E. G. Shapiro, T. Schafer, and K. H. Spatschek, Variational approach to optical pulse propagation in dispersion compensated transmission systems, Opt. Commun., **151** #1-3, pp. 117–135, 1998.
- [30] Y. Chen and H.A. Haus, Dispersion-managed solitons with net positive dispersion, Opt. Lett., **23**, pp. 1013, 1998.
- [31] N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Enhanced power solitons in optical fibers with periodic dispersion management, Elect. Lett., **32**, pp. 54–55, 1996.
- [32] J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion, Elect. Lett., 33 #20, pp. 1726–1727, 1997.
- [33] V. S. Grigoryan, T. Yu, E. A. Golovchenko, C. R. Menyuk, and A. N. Pilipetskii, Dispersion-managed soliton dynamics, Opt. Lett., **22** #21, pp. 1609–1611, 1997.
- [34] V. S. Grigoryan and C. R. Menyuk, Dispersion-managed solitons at normal average dispersion, Opt. Lett., **23** #8, pp. 609–611, 1998.
- [35] J. H. B. W. Nijhof, W. Forysiak, and N. J. Doran, The averaging method for finding exactly periodic dispersion-managed solitons, IEEE J. Select. Topics in Quantum Elec., **6** #2, pp. 330–336, 2000.

- [36] Yuji Kodama, Nonlinear pulse propagation in dispersion managed system, Phys. D, **123** #1-4, pp. 255–266, 1998.
- [37] S. K. Turitsyn, V. K. Mezentsev, and E. G. Shapiro, Dispersion-managed solitons and optimization of the dispersion management, Opt. Fiber Technol., **4** #4, pp. 384–452, 1998.
- [38] T. S. Yang, W. L. Kath, and S. K. Turitsyn, The multiple-scale averaging and dynamics of dispersion-managed optical solitons, J. Eng. Math., **36** #1, pp. 163–184, 1999.
- [39] V. Cautaerts, A. Maruta, and Y. Kodama, On the dispersion managed soliton, Chaos, **10**, pp. 515–528, 2000.
- [40] T.-S. Yang and W. L. Kath, Radiation loss of dispersion-managed solitons in optical fibers, Phys. D, **149**, pp. 80–94, 2001.
- [41] A. Berntson, N. J. Doran, W. Forysiak, and J. H. Nijhof, Power dependence of dispersion-managed solitons for anomalous, zero and normal path-average dispersion, Opt. Lett., **23**, pp. 900–902, 1998.
- [42] D. E. Pelinovsky, Instabilities of dispersion-managed solitons in the normal dispersion regime, Phys. Rev. E, **62**, pp. 4283–4293, 2000.
- [43] G. Biondini and S. Chakravarty, Nonlinear chirp of dispersion-managed return-to-zero pulses, Opt. Lett., **26**, pp. 1761–1763, 2001.
- [44] T.-S. Yang, W. L. Kath, and S. G. Evangelides, Optimal prechirping for dispersion managed transmission of return to zero pulses. In OFC '99 Technical Digest, volume 6, pages 249–251. Optical Society of America, 1999.
- [45] C. R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE Journal of Quantum Electronics, **23** #2, pp. 174–176, 1987.
- [46] P. K. A. Wai and C. R. Menyuk, Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence, J. Lightwave Technol., **14** #2, pp. 148–157, 1996.

- [47] M. J. Ablowitz, G. Biondini, S. Chakravarty, R. B. Jenkins, and J. R. Sauer, Four-wave mixing in wavelength-division-multiplexed soliton systems: Damping and amplification, Opt. Lett., **21** #20, pp. 1646–1648, 1996.
- [48] O. V. Sinkin, J. Zweck, and C. R. Menyuk, Comparative study of pulse interactions in optical fiber transmission systems with different modulation formats, Opt. Express, **9** #7, pp. 339–352, 2001.
- [49] T. Ito, K. Fukuchi, Y. Inada, T. Tetsufumi, T. Harumoto, M. Kakui, and K. Fuji, 3.2 tb/s–1500 km wdm transmission experiment using 64 nm hybrid repeater amplifiers. In *OFC 2000 Technical Digest*, page PD24. Optical Society of America, 2000.
- [50] M. J. Ablowitz, G. Biondini, S. Chakravarty, and R. L. Horne. Four-wave mixing in dispersion-managed return-to-zero systems. J. Opt. Soc. Am. B **20**, to appear, 2003.
- [51] J. F. L. Devaney, W. Forysiak, , A. N. Niculae, and N. J. Doran, Soliton collisions in dispersion-managed wavelength-division-multiplexed systems, Opt. Lett., **15**, pp. 1695, 1997.
- [52] B. A. Malomed D. J. Kaup and J. Yang, Collision-induced pulse timing jitter in a wavelength-division-multiplexing system with strong dispersion management, J. Opt. Soc. Am. B, **16**, pp. 1628–1635, 1999.
- [53] M. J. Ablowitz, G. Biondini, A. Biswas, S. Chakravarty, A. Docherty, and T. Hirooka, Collision-induced timing shifts in dispersion-managed soliton systems, Opt. Lett., **27**, pp. 318–320, 2002.