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The key component of high-speed communications
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Single mode optical fibers[1]:

◦ inner core diameter ≈ 2− 5µm
◦ outer cladding diameter ≈ 100µm
◦ wavelength ≈ 1.3− 1.5µm
◦ weakly guiding:

ncore − nclad
nclad

� 1
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Mathematical description of signals in an optical fiber

Nonlinear Schrödinger (NLS) equation[1, 2]:

∂u

∂z
= − i
2
k ′′(ω)

∂2u

∂t2
+ iγ|u|2u ,

◦ u is signal envelope, |u|2 is power

◦ γ = ωn2/cAeff is nonlinear coefficient (units m−1W−1)

◦ n2 =nonlinear index coeff.; Aeff =effective mode area,

Aeff =

[∫∫
|F (x, y)|2 dx dy

]2∫∫
|F (x, y)|4 dx dy

,

where F (x, y) is transverse mode shape

◦ k ′′(ω) is the dispersion coefficient
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The first term in the NLS equation: dispersion

k ′′(ω) is the dispersion coefficient

∂u

∂z
= − i
2
k ′′(ω)

∂2u

∂t2

2nd derivative makes pulse widen (disperse) with distance
since different frequencies have different group velocities

k ′′(ω) > 0, normal/defocusing; k ′′(ω) < 0, anomalous/focusing
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The second term in the NLS equation: nonlinearity

∂u

∂z
= iγ|u|2u

◦ Intensity-dependent phase rotation

◦ Creates new signal frequencies:
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Balance of dispersion + nonlinearity produce solitons

Dimensionless NLS (anomalous dispersion):

i
∂u

∂z
+
1

2

∂2u

∂t2
+ |u|2u = 0

soliton — nonlinearity cancels dispersion; robust to disturbances:

u = A sech[A(t−T−Ωz)]e i [Ωt+12 (A2−Ω2)z+ϕ]

◦ made practical by laser (1960), & making of low-loss fiber

◦ NLS exactly solvable by the inverse scattering transform:
Zakharov and Shabat, 1971 [3]

◦ NLS proposed for fibers by Hasegawa and Tappert, 1973 [4]

◦ experimental verification by Mollenauer, 1983 [5]

Fields Institute 2004 6



Insight from more complicated NLS solutions

Soliton interaction: wavelength-division-multiplexing
(WDM) and collision-induced timing shifts

Bound N-soliton: model of pulse compression
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The global significance of the NLS equation
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Transmission system length scales [6]
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The elements of an optical transmission system
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Some examples of transmission formats

1 1 0 1 0 0 1 1 1
NRZ

RZ

Non-return-to-zero (NRZ):

◦ work with low powers and small dispersion
◦ lots of engineering experience

Return-to-zero (RZ) and/or solitons:

◦ soliton only when nonlinearity and dispersion balance
◦ lower-powered pulses: chirped return-to-zero (CRZ)

Other formats: differential phase-shift keying,. . .
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Impairments in optical communication systems

Solitons:

◦ with loss/amplification, soliton collisions become inelastic
⇒ permanent frequency shifts, resonant four-wave mixing

NRZ and CRZ:

◦ need to compensate for accumulated dispersion
◦ overcoming noise with larger signal powers⇒ nonlinearity

All formats:

◦ amplifier noise⇒ finite signal-to-noise ratio
◦ net dispersion + noise⇒ Gordon-Haus timing jitter
◦ random birefringence⇒ polarization-mode dispersion

Nonlinearity, dispersion, noise and polarization effects
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Loss is compensated by amplifiers

Input
Pulse

Output
Pulse

Amp. Amp.Amp. ~~ ~~~~ ~~

Nonlinear
Optical Fiber

◦ Erbium-doped fiber amplifiers (EDFAs), periodically
spaced (every 50 km or so), are ideal at 1.55µm

◦ power loss α = 0.24 dB/km; Γ = (α/20) ln 10

Mean

distance

am
pl

itu
de

Raman (distributed) amplification now also used
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Side effects due to the amplifiers

Transformed NLS (due to Hasegawa and Kodama):[2, 7-9]

∂ū

∂z
=
i

2

∂2ū

∂t2
+ ia2(z/ε)|ū|2ū

◦ a2(z/ε) due to power variations

◦ Can be replaced by its average (H&K), giving NLS
propagation for the mean of ū (to leading order)

But,

◦ Amplifiersí amplified spontaneous emission (ASE) noise
produces jitter in soliton parameters A, ϕ, Ω and T

◦ Jitter leads to transmission errors
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The NLS equation with additive noise [10, 11]

i
∂u

∂z
+
1

2

∂2u

∂t2
+ |u|2u =

∑
fn(t)δ(z − nza) .

Here, f (t) is Gaussian white noise added at each amplifier

〈fi(t)f ∗j (t ′)〉 =
(G − 1)2
G lnG

ηspTwγ

|β′′| δ(t − t
′)δi j .

G = amplifier gain; ηsp = spontaneous emission factor;
Tw = pulse width; γ, β′′ = nonlinear, dispersion coefficients

(Actually, noise must be a version with finite spectral extent)
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Amplitude jitter example
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Timing jitter example
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Filtering to reduce timing jitter [12-17]

Add frequency reference to stop growth of jitter

F (ω) ≈ F (0) + 1
2
F ′′(0)ω2 + . . . ⇔ F (0)− 1

2
F ′′(0)

∂2

∂t2
+ . . .

⇒ ∂u

∂Z
= i
1

2

∂2u

∂T 2
+ i |u|2u + αu + β ∂

2u

∂T 2

◦ filtering acts like diffusion⇒ Ginzburg-Landau equation

◦ extra gain needed to compensate diffusive loss

◦ solitons stabilized to frequency and amplitude
fluctuations, but direct timing noise still present

Need for stable pulses (in fiber loop): fiber lasers
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Dispersion management

Periodic concatenation of fibers with alternating dispersion

average dispersion
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Dispersion map = specific choice of parameters (d1,2, za, z1,2)
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Dispersion management (continued)

NLS equation with rapidly varying dispersion

∂u

∂z
=
i

2
d(
z

za
)
∂2u

∂t2
+ g(

z

za
)|u|2u

For all formats:

◦ low average dispersion reduces Gordon-Haus jitter
◦ high local dispersion reduces four-wave mixing

For non-soliton pulses:

◦ dispersion compensation
◦ compression/expansion cycle reduces peak nonlinearity

For solitons:

◦ power enhancement further reduces Gordon-Haus timing jitter
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Analytical/numerical methods for dispersion management

The same factors which make dispersion management so useful
also make it so much harder to analyze

One has a PDE with large and rapid perturbations

Analytical/numerical methods:

◦ Lie transform, multiple scales or averaging methods [18-26]

◦ Variational or moment methods [27-30]

◦ Numerical simulations [31-34]

Reviews: [35-39]
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Breathing of the full dispersion-managed (DM) pulse

DM solitons recover their profile stroboscopically (up to a phase)

Non-soliton pulses have non-periodic evolution
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Radiation loss of DM solitons [40]

Dispersion-managed NLS without loss and gain:

∂u

∂Z
=
i

2
σ
(z
ε

) ∂2u
∂T 2

+ i |u|2u

Here σ is O(1)⇒ weak dispersion management

Formal asymptotic expansion; can show for small ε that

Ir = |u|2t→±∞ ∼
π

4ε
|C|2 exp (−2π3/2/ε1/2)

where C is an O(1) constant determined numerically

Thus, radiation loss is beyond all orders
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Results of refined numerical simulations for 2-step maps
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Comparison between theory and simulations
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Coefficient C shows radiation nulls for some parameters
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Simulations showing radiation nulls
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Non-periodic chirped return-to-zero (CRZ) pulses

Characterize using RMS pulse parameters (moments)

◦ pulse energy: E =
∞∫
−∞
|u|2dt (constant)

◦ temporal width: τ2 =
∞∫
−∞
t2|u|2dt /E

◦ spectral width: (∆ω)2 =
∞∫
−∞
|ut |2dt /E

◦ chirp: b =
∞∫
−∞
t Im{u∗ut} dt / (Eτ2)

◦ average power: P =
∞∫
−∞
|u|4dt /E

Can obtain and study ODEs for these parameters [27-29, 41-43]

Fields Institute 2004 28



CRZ pulse dynamics [44]
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Can show analytically that nonlinearity reduced by O(log s/s) [26]
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Basic polarization effects
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Coupled NLS equations for E-field envelope [45]:

i
∂uuu

∂z
+ ∆∆∆βββ uuu + i∆∆∆βββ′

∂uuu

∂t
+
1

2

∂2uuu

∂t2
+ NNN(uuu) = 0

uuu =

[
u

v

]
, NNN(uuu) =

[
(|u|2 + 23 |v |2)u +

1
3v
2u∗

(|v |2 + 23 |u|2)v +
1
3u
2v∗

]
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Coupled NLS (CNLS) equations

i
∂uuu

∂z
+ ∆∆∆βββ uuu + i∆∆∆βββ′

∂uuu

∂t
+
1

2

∂2uuu

∂t2
+ NNN(uuu) = 0

∆∆∆βββ = b

[
cos 2θ sin 2θ

− sin 2θ cos 2θ

]
, ∆∆∆βββ′ = b′

[
cos 2θ sin 2θ

− sin 2θ cos 2θ

]

◦ ∆∆∆βββ is phase velocity difference. b = ||∆∆∆βββ||

◦ ∆∆∆βββ′ is group velocity difference

◦ θ is angle between the coordinate & fiber principal axes

◦ these terms vary randomly with distance and over time
⇒ polarization-mode dispersion (PMD).
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Polarization-mode dispersion

birefringence: phase, group velocity polarization dependent

Two kinds of birefringence variations: small- and large-scale:

◦ small-scale from internal fiber perturbations
(e.g., from core cross-section fluctuations from manufacturing
imperfections, stress variations from differential cooling, etc.)

◦ large-scale from macroscopic effects
(e.g., bending and twisting)
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Phase and group birefringence

Birefringence = velocity difference

◦ Phase birefringence produces random rotation of the
polarization state

◦ Group birefringence produces random pulse splitting
(differential group delay, DGD; fast vs. slow axes)

Typical length scales:

◦ Random birefringence: 10’s or 100’s of meters

◦ Dispersion and nonlinearity: 100’s of kilometers

Resolve linear evolution over short distances first;
interaction with dispersion and nonlinearity later
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Manakov-PMD equations [46]

Use fundamental solution UUU for part of linear evolution ,

i
∂UUU

∂z
+ ∆∆∆βββ UUU = 0 ,

and transformation uuu = UUUΨΨΨ to remove fast polarization
rotation

⇒ i
∂ΨΨΨ

∂z
+
1

2

∂2ΨΨΨ

∂t2
+
8

9
|ΨΨΨ|2ΨΨΨ = −i∆̂∆∆βββ′ ∂ΨΨΨ

∂t
− N̂NN,

where
∆̂∆∆βββ′ = UUU†∆∆∆βββ′ UUU ,

and N̂NN represents the fluctuating part of the nonlinearity
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Manakov-PMD equations, continued

◦ Under reasonable assumptions, 〈∆̂∆∆βββ′〉 = 0 and 〈N̂NN〉 = 0

◦ Thus, mean evolution obeys the Manakov equation,

i
∂ΨΨΨ

∂z
+
1

2

∂2ΨΨΨ

∂t2
+
8

9
|ΨΨΨ|2ΨΨΨ = 0

◦ Manakov equation also completely integrable by the IST

◦ If only one polarization present, reduces to scalar NLS

◦ Full analysis requires dealing with coupled system and
perturbing random birefringence fluctuations
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Wavelength-division-multiplexing

Recall explicit N-soliton solution:

u(z, t) =
N∑
j,k=1

(Q−1)jk ,

Qjk =
exp[−iχj − Sj ] + exp[−iχk + Sk ]

Aj + Ak + i(Ωj −Ωk)
,

Sj(z, t) = Aj(t − Tj −Ωjz) ,
χj(z, t) = Ωj t − 12(Ω

2
j − A2j )z +Φj .

4N soliton parameters: Aj , Ωj , Tj and Φj .

Wavelength-division multiplexing:

|Aj + Ak | � |Ωj −Ωk | for k 	= j

Several frequency channels simultaneously travel across the fiber.
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WDM interactions and four-wave mixing

Soliton interactions in lossless fibers

◦ WDM regime: well-separated frequency channels

◦ Expand the N-soliton solution in powers of

max
j,k=1,...,N

|Aj + Ak |/|Ωj −Ωk |

◦ u(0)(z, t) =
∑N
j=1 uj(z, t), superposition of N one-soliton solutions.

◦ To leading order, WDM solitons traverse each other as linear pulses.

◦ O(ε): permanent timing shifts due to collisions,
corresponding to a temporary shift of the soliton frequency.

◦ Soliton interactions are pairwise to leading order.
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Soliton interactions and four-wave mixing

A1 = A2 = 1, Ω2 = −Ω1 = 3.2, T2 = −T1 = 8.

O(ε2): four-wave mixing terms, at N2(N − 1)/2 frequencies
(not necessarily distinct):

Ωklj = Ωk +Ωl −Ωj , k, l 	= j .

FWM terms are produced during soliton interactions, and their energy
flows back into the solitons after the collision.
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Four-wave mixing in real fibers [47]

2-soliton collision with loss and amplification:

Γ = 10, za = 0.2, A1 = A2 = 1

Ω1 = −Ω2 = −3, T1 = −T2 = 5.

Similar problem independent of transmission format.
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Four-wave mixing in real fibers (continued)

Solid line: the four-wave mixing amplitude as a function of z .
Dashed line: the corresponding amplitude in the lossless case.
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Four-wave mixing in real fibers

◦ Two-soliton collision: u = us + ufwm + · · ·
us = u1 + u2 = solitons, with frequencies Ω1, Ω2
ufwm = u112 + u221 = FWM terms, located at Ω112, Ω221:

Ω112 = 2Ω1 −Ω2 Ω221 = 2Ω2 −Ω1

◦ Growth of anti-Stokes FWM:

i
∂u221

∂z
+
1

2

∂2u221

∂t2
= −g(z)u22u∗1

◦ Resonance condition:

2nπ

〈d〉za
= ∆Ω2 +

1

2
A2

◦ Similar phenomenon for all transmission formats [48]
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Dispersion management reduces growth of sidebands

system parameters from
WDM experiments [49]

The interactions are sometimes almost better than for pure NLS!

Large, rapid phase variations responsible for FWM reduction [50]

Collision-induced timing jitter theory is much more involved [51-53]
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Summary

◦ Optical fibers are the backbone for today’s communications

◦ NLS equation provides the fundamental framework for many models

◦ Much more work has been done with NLS than with Manakov

◦ Perturbations almost always involved:
loss/gain, noise, dispersion management, polarization effects...

◦ The rich structure of NLS leads to lots of interesting behavior

◦ New technologies continue to produce new mathematical questions

∂u

∂z
=
i

2

∂2u

∂t2
+ i |u|2u
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