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Waves



Wave = Pattern in space which evolves over time
Pervade every aspect of our lives:
light, microwaves, radio waves ...
atmospheric pressure waves influence weather
physiological waves keep you alive!

e.g. electric wave causes heart beat



Some examples of 2-d waves:

® Planewaves

t = 0 snapshot

® Target pattern waves

t = 0 snapshot .

e.g. u(x,y,t) =sin(\/2? +y> — t)




Spirals



Snapshot of a spiral wave (seen from above):




Spiral waves are observed in:

certain types of chemical reactions (Belousov-Zhabotinsky)
sime-mold aggregates

cardiac tissue (may lead to fatal arrythmias)

other excitable media (including biological tissue)



Spiral waves are observed in:

certain types of chemical reactions (Belousov-Zhabotinsky)
sime-mold aggregates

cardiac tissue (may lead to fatal arrythmias)

other excitable media (including biological tissue)

" ...spiralson the heart are fatal, spirals on the cerebral cortex
may lead to epileptic seizures, and spirals on the retina may
cause hallucinations" —— Mathematical Physiology

J. Keener & J. Sneyd, P. 305



How do (isolated) spirals move? (A. Winfree)

rigid uniform rotation
guasi—periodic meandering

linear drifting

hypermeander (chaotic?)



Transition to meandering

0.1

0.05

D. Barkley (1994) PRL
Numerical simulation of a model for cardiac electrophysiology



Transition to meandering
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FIG. 4. Dynamics of spirals as a function of [H:504]5 and
[CH:(COOH), ¥ {with other conditions as in Fig. 1). The solid
line marks the transition from simple spirals (@) to meandering
spirals with inward () and outward () petals. Traveling
spirals () exist along the dashed line that separates the two
types of meandering spirals.

Li, Ouyang, Petrov & Swinney (1996) PRL
Actual chemical reaction



Transition to meandering

Phenomenon appear sto be model independent!



Euclidean symmetry



Mathematical models of phenomena where spiralsare
observed are (typically) reaction-diffusion PDESs

—= nonlinear! (can not solve them exactly)
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—= nonlinear! (can not solve them exactly)
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v=uv(z,y,t)
o~ D,Vu + 1 (u —u? — fv;‘f%g)

% =D,V + (u—v)

2 _ 07 d?



M athematical models of phenomena where spiralsare
observed are (typically) reaction-diffusion PDEs

—= nonlinear! (can not solve them exactly)
e.g. Belousov-Zhabotinsky chemical reaction

two species, concentrations u = u(z,y,?)

——————————————————————————————
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M athematical models of phenomena where spiralsare
observed are (typically) reaction-diffusion PDEs

—= nonlinear! (can not solve them exactly)

e.g. FitzHugh-Nagumo (electric wavesin biological tissue)
electric potential & = &(x, y, )
recovery function v = v(z, ¥y, t)

0P __ 72 1 3

% =e(®+ 58— )

2 _ 07 d?



General class of models

= (ui(x,y,t),..

ou

ot

=D - Vi + F(u)

° un(x, Y, t))

(RD)

D = n x n matrix of diffusion constants

F  R" — R" "smooth enough”



(RD) defines a dynamical system on a suitable space
of functions: X = {v: R* — R" |7 satisfies ... }
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(RD) defines a dynamical system on a suitable space
of functions: X = {v: R* — R" |7 satisfies ... }

u(z,y,t) = p(t, vh) = solution curve of (RD)
@ :R" XX — X (flow map)
©(0,7y) = vy (initial condition)
p(ts +ta, ) = p(tr, (b, -)) (semi-flow property)



Thisdynamical system has nice symmetry properties:
SE(2) = special Euclidean group action on R?

x\ [cosf —sind x P1
(/79,]91,]92)' (y) _< sin 6 COS(9> (y> +<p2 )

\ \
rotation translation
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Thisdynamical system has nice symmetry properties:
SE(2) = special Euclidean group action on R?

x\ [cosf —sind x p1
(/79,]91,]92) ' (y) _< sin 0 COS 9) (y ) +<p2 )

\
rotation translation

Complex notation:  z=x+iy, p = p1 + ips
Ypz=e"z+p (0,p) €S'xC

Group product: (6, py) - (0a, Pa) = (0 + 00, P + €pa)



Thisdynamical system has nice symmetry properties:

Induced SE(2) — action on X

(Yo + 0)(2) = (7, )




Example of group action :

. Translation

Rotation




This dynamical system has nice symmetry properties:

o(t,y-0)="-(t,7), VyeSE2), Vie X, Vt>0




This dynamical system has nice symmetry properties:

o(t,y-7U)="-(t,v), VyeSEQ2), Vie X, Vt>0

Consequence:

If 4(t, z,y) is a solution of (RD),

then so is u,(t,z,y) = v - u(t,z,y), Vv € SE(2)




Relative equilibria



Rotating wave:

U(t, 2) = Y0 - U = u*(e™1z)
for some u* € X

Time evolution =

uniform rigid spatial rotation




Rotating wave:

U(t, 2) = Y0 - U = u*(e™1z)
for some u* € X

Time evolution =

uniform rigid spatial rotation

4

w (v () — 2% (w,y)) = D - V2 (@) + F(@ (x,y))



Group orbit: Y = {~-u*|y € SE(2)} C X



Group orbit: Y = {~-u*|y € SE(2)} C X
Yy=S'xC



Group orbit: Y = {~-u*|y € SE(2)} C X
Yy=S'xC

YV is a 3-d manifold, invariant for ¢



Group orbit: Y = {~-u*|y € SE(2)} C X
Yy =S'xC
YV is a 3-d manifold, invariant for ¢

Y is called a relative equilibrium




Group orbit: Y = {~-u*|y € SE(2)} C X

Yy=S'xC

YV is a 3-d manifold, invariant for ¢

Y is called a relative equilibrium

Dynamics of the semi-flow ¢ on ) are described by ODEs

0
p

w
0

Describes motion
of spiral "tip"



Group orbit: Y = {~-u*|y € SE(2)} C X

Yy=S'xC

YV is a 3-d manifold, invariant for ¢

Y is called a relative equilibrium

Dynamics of the semi-flow ¢ on ) are described by ODEs

0
p

w
0

Describes motion
of spiral "tip"

0(t) = wit +wo, p(t) = po

Rotation about py with frequency w



Bifur cation to meandering



Linearized stability :

If you start (initial condition) on ...



Linearized stability :

If you start (initial condition) on ...
you stay on ) for all t > 0 (¢(t,)) C V)



Linearized stability :

What if the initial condition is off (but close to) Y7



Linearized stability :

To answer this question, need to consider

the eigenvalue problem Lu = Au

EzD-V2+dF(ﬁ*)—w(y%—xa%)



Linearized stability :

0 Symmetry

etgenvalues

—W



Linearized stability :




Linearized stability :




Transition to meandering : linearized stability
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Transition to meandering : linearized stability
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Numerical simulation of a model for cardiac electrophysiology
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If £ has eigenvalues 0, 1w, €2 and all other eigenvalues

bounded away from imaginary axis in left-plane...



Hopf bifurcation from ) (Sandstede, Scheel, Wulff, JDE (1997))

If £ has eigenvalues 0, 1w, +1€2 and all other eigenvalues

bounded away from imaginary axis in left-plane...
3 invariant 5-d ”center-bundle” ) x C which is stable,

and dynamics of ¢ on ) X C reduce to...



Hopf bifurcation from ) (Sandstede, Scheel, Wulff, JDE (1997))

0 = w+ Fq.q)
p = ¢"F(q,q)
¢ = Fq,q)

F%0,0) =0, F?(0,0) =0, F0,0) =0
d,F(0,0) = iQ, dzF(0,0) =0



Hopf bifurcation from ) (Sandstede, Scheel, Wulff, JDE (1997))

0 = w+ Fq,q)~
p = ¢"F(q,q)
¢ = Fq,q)--—----

F%0,0) =0, F?(0,0) =0, F0,0) =0
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Hopf bifurcation from ) (Sandstede, Scheel, Wulff, JDE (1997))

0 = w+ Fq.q)
p = €"F"q,q) -
¢ = Fq,q)

F%0,0) =0, F?(0,0) =0, F0,0) =0

d,F1(0,0) = i€, d;F*(0,0)

=0



Analysis of center—bundle ODEs
Golubitsky, LeBlanc & Melbourne, INS (1997, 2000)
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Analysis of center—bundle ODEs
Golubitsky, LeBlanc & Melbourne, INS (1997, 2000)

0 =
]:j:
q:

w+ F(q,q, )
eFr(q,q, )
F(q,q, )

(8 = bifurcation
parameter

Perform "normal form” change of coordinates on ¢ eqn :

q=(B+1iQ0B))q — |q*q

5

T




Analysis of center—bundle ODEs
Golubitsky, LeBlanc & Melbourne, INS (1997, 2000)

0 = w+Fq,q,p)
p = €PFr(q,q,B) | = bifurcation
g = F‘J(CLQ’ 5) parameter

Perform "normal form” change of coordinates on ¢ eqn :

q=(B+1iQ0B))q — |q*q

@ O{\ﬂ B




Analysis of center—bundle ODEs
Golubitsky, LeBlanc & Melbourne, INS (1997, 2000)

0 = w+Fq,q,p)
p = €PFr(q,q,B) | = bifurcation
g = F‘J(CLQ’ 5) parameter

Perform "normal form” change of coordinates on ¢ eqn :

q=(B+1iQ0B))q — |q*q

S~ m—periodic

Yf //’/’ limit-cycle
S
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p(t) = po




0(t) =wt+ > ez Ax(B) e/HUP)E

( Bi(8) il kD))
Z i(w+ kQB))
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0(t) =wt+ > ez Ar(B) e/HUP)E

( Bi(8) il kD))
Z i(w+ kQB))

£) = keZ
p( ) B_l(ﬁ)t n Z Mei( Jwt

Q 0000000 J verified

experimentally
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Numerical simulation of a model for cardiac electrophysiology
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FIG. 4. Dynamics of spirals as a function of [H:504]5 and
[CH:(COOH), ¥ {with other conditions as in Fig. 1). The solid
line marks the transition from simple spirals (@) to meandering
spirals with inward () and outward () petals. Traveling
spirals () exist along the dashed line that separates the two
types of meandering spirals.

Li, Ouyang, Petrov & Swinney (1996) PRL
Actual chemical reaction
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In reality, Euclidean symmetry isNEVER exact :

Boundaries and inhomogeneities break trandational
symmetry

Anisotropy breaksrotational symmetry
(especially relevant in cardiac tissue)

Experiments confirm effects of symmetry breaking :

Boundary drifting (Zykov & Muller)
Spiral anchoring (Munuzuri et al., Jalife et al.)

Phase locking / drifting of meandering wavesin
anisotropic tissue (Roth)



We can explain these experimentally observed phenomena
using finite—dimensional center—bundle ODEs (forced
symmetry—breaking) similarly to what was presented here

LeBlanc & WuIff, JINS (2000)
LeBlanc (2002)

and make some predictions which were verified experimentally

LeBlanc & Roth (2003)
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Model-independent approach

characterize the fundamental dynamical properties
of spiral waves

Uses techniques from many fields of mathematics

group theory, representation theory, functional analysis,
differential geometry, dynamical systems,
bifurcation theory

Current and future work includes

combined forced symmetry—breaking
spiral waves in spherical and quasi—spherical domains
scroll waves in 3—d media
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