Euclidean Symmetry and the Dynamics of Spiral Waves

Victor G. LeBlanc
Department of Mathematics and Statistics
University of Ottawa
Ottawa, ON K1N 6N5
vleblanc@uottawa.ca
http://aix1.uottawa.ca/~vleblanc

Outline

- Waves
- Spirals
- Euclidean symmetry
- Relative equilibria
- Bifurcation to meandering
- Broken symmetry
- Conclusions and ongoing work

Waves

- Wave = Pattern in space which evolves over time
- Pervade every aspect of our lives:

light, microwaves, radio waves ...

atmospheric pressure waves influence weather

physiological waves keep you alive!

e.g. electric wave causes heart beat

Some examples of 2-d waves:

Plane waves

$$t=0 \ snapshot$$

e.g.
$$u(x, y, t) = e^{-\frac{1}{10}(x+3y-t)^2}$$

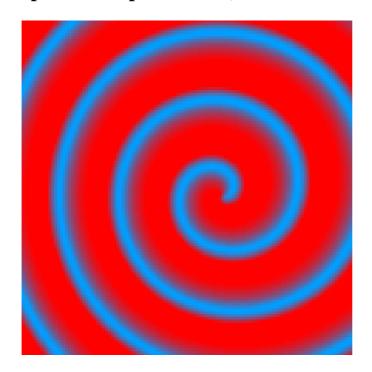
• Target pattern waves

$$t = 0 \ snapshot$$

e.g.
$$u(x, y, t) = \sin(\sqrt{x^2 + y^2} - t)$$

Spirals

Snapshot of a spiral wave (seen from above):



Spiral waves are observed in:

- certain types of chemical reactions (Belousov-Zhabotinsky)
- slime-mold aggregates
- cardiac tissue (may lead to fatal arrythmias)
- other excitable media (including biological tissue)

Spiral waves are observed in:

- certain types of chemical reactions (Belousov-Zhabotinsky)
- slime-mold aggregates
- cardiac tissue (may lead to fatal arrythmias)
- other excitable media (including biological tissue)

"...spirals on the heart are fatal, spirals on the cerebral cortex may lead to epileptic seizures, and spirals on the retina may cause hallucinations" — Mathematical Physiology

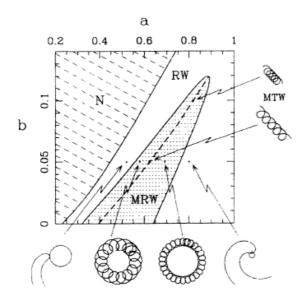
J. Keener & J. Sneyd, P. 305

How do (isolated) spirals move? (A. Winfree)

- rigid uniform rotation
- quasi-periodic meandering
- linear drifting
- hypermeander (chaotic?)

•

Transition to meandering



D. Barkley (1994) PRL
Numerical simulation of a model for cardiac electrophysiology

Transition to meandering

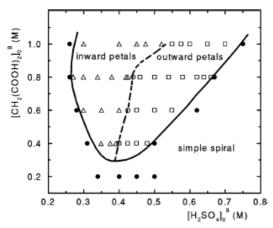


FIG. 4. Dynamics of spirals as a function of $[H_2SO_4]_0^B$ and $[CH_2(COOH)_2]_0^B$ (with other conditions as in Fig. 1). The solid line marks the transition from simple spirals (\blacksquare) to meandering spirals with inward (\triangle) and outward (\square) petals. Traveling spirals (\bigcirc) exist along the dashed line that separates the two types of meandering spirals.

Li, Ouyang, Petrov & Swinney (1996) PRL Actual chemical reaction

I I alisitivii to ilicaliuci ili	Transition	to	meand	lerin	Q
----------------------------------	------------	----	-------	-------	---

Phenomenon appears to be model independent!

Euclidean symmetry

Mathematical models of phenomena where spirals are observed are (typically) reaction-diffusion PDEs

---> nonlinear! (can not solve them exactly)

Mathematical models of phenomena where spirals are observed are (typically) reaction—diffusion PDEs

--> nonlinear! (can not solve them exactly)

e.g. Belousov-Zhabotinsky chemical reaction

two species, concentrations
$$\begin{array}{c} u = u(x, y, t) \\ v = v(x, y, t) \end{array}$$

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + \frac{1}{\varepsilon} \left(u - u^2 - f v \frac{u - q}{v - q} \right)$$

$$\frac{\partial v}{\partial t} = D_v \nabla^2 v + (u - v)$$

N.B.
$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Mathematical models of phenomena where spirals are observed are (typically) reaction-diffusion PDEs

--> nonlinear! (can not solve them exactly)

e.g. Belousov-Zhabotinsky chemical reaction

two species, concentrations $\begin{array}{c} u = u(x,y,t) \\ v = v(x,y,t) \end{array}$

$$\frac{\partial u}{\partial t} = \left[D_u \nabla^2 u \right] + \left[\frac{1}{\varepsilon} \left(u - u^2 - f v \frac{u - q}{v - q} \right) \right]$$

$$\frac{\partial v}{\partial t} = \left[D_v \nabla^2 v \right] + \left[(u - v) \right]$$

$$diffusion$$
reaction

N.B.
$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

Mathematical models of phenomena where spirals are observed are (typically) reaction-diffusion PDEs

--> nonlinear! (can not solve them exactly)

e.g. FitzHugh-Nagumo (electric waves in biological tissue)

electric potential $\Phi = \Phi(x,y,t)$ recovery function v = v(x,y,t) $\frac{\partial \Phi}{\partial t} = \nabla^2 \Phi + \frac{1}{\varepsilon} \left(\Phi - \frac{\Phi^3}{3} - v \right)$

$$\frac{\partial v}{\partial t} = \varepsilon (\Phi + \beta - \gamma v)$$

N.B.
$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

General class of models

$$\vec{u} = (u_1(x,y,t),\ldots,u_n(x,y,t))$$

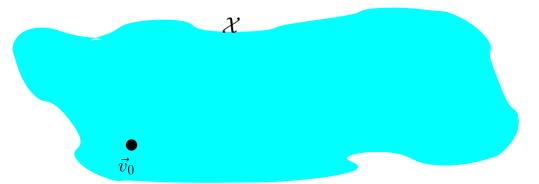
$$\frac{\partial \vec{u}}{\partial t} = D \cdot \nabla^2 \vec{u} + \mathcal{F}(\vec{u})$$
 (RD)

 $D = n \times n$ matrix of diffusion constants

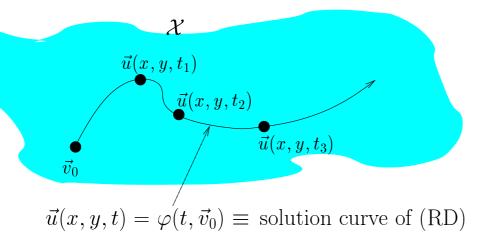
 $\mathcal{F}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ "smooth enough"

(RD) defines a <u>dynamical system</u> on a suitable space of functions : $\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \longrightarrow \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}$

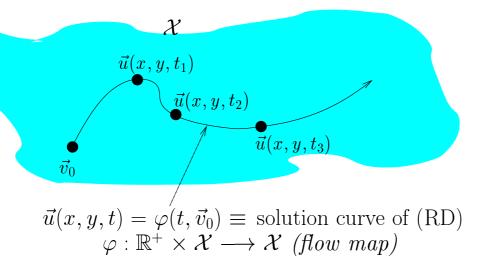
(RD) defines a <u>dynamical system</u> on a suitable space of functions : $\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \longrightarrow \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}$



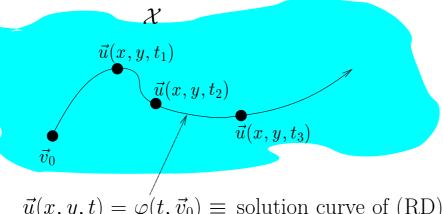
of functions: $\overline{\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \longrightarrow \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}}$



of functions: $\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \longrightarrow \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}$



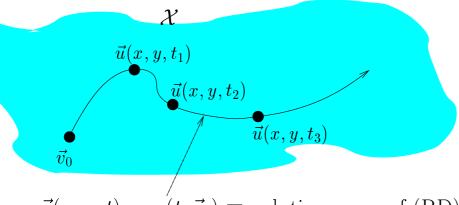
of functions: $\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \longrightarrow \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}$



$$\vec{u}(x, y, t) = \varphi(t, \vec{v}_0) \equiv \text{ solution curve of (RD)}$$

 $\varphi : \mathbb{R}^+ \times \mathcal{X} \longrightarrow \mathcal{X} \text{ (flow map)}$
 $\varphi(0, \vec{v}_0) = \vec{v}_0 \text{ (initial condition)}$

of functions: $\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \stackrel{-}{\longrightarrow} \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}$



$$\vec{u}(x, y, t) = \varphi(t, \vec{v}_0) \equiv \text{ solution curve of (RD)}$$
 $\varphi : \mathbb{R}^+ \times \mathcal{X} \longrightarrow \mathcal{X} \text{ (flow map)}$
 $\varphi(0, \vec{v}_0) = \vec{v}_0 \text{ (initial condition)}$
 $\varphi(t_1 + t_2, \cdot) = \varphi(t_1, \varphi(t_2, \cdot)) \text{ (semi-flow property)}$

 $\mathbb{SE}(2) \equiv \text{special Euclidean group action on } \mathbb{R}^2$

$$(\gamma_{\theta,p_1,p_2}) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$

$$rotation$$

$$translation$$

 $\mathbb{SE}(2) \equiv \text{special Euclidean group action on } \mathbb{R}^2$

$$(\gamma_{\theta,p_1,p_2}) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$

$$rotation$$

$$translation$$

Complex notation:
$$z = x + iy, \ p = p_1 + ip_2$$

 $\gamma_{\theta,p} z = e^{i\theta} z + p \quad (\theta, p) \in \mathbb{S}^1 \times \mathbb{C}$

 $\mathbb{SE}(2) \equiv \text{special Euclidean group action on } \mathbb{R}^2$

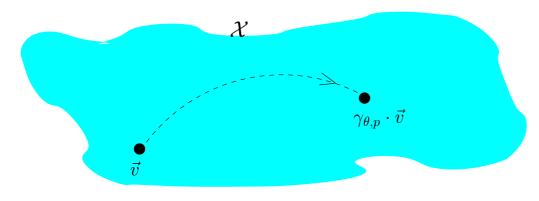
$$(\gamma_{\theta,p_1,p_2}) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$
rotation
$$translation$$

Complex notation:
$$z = x + iy, \ p = p_1 + ip_2$$

 $\gamma_{\theta,p} z = e^{i\theta} z + p \quad (\theta, p) \in \mathbb{S}^1 \times \mathbb{C}$

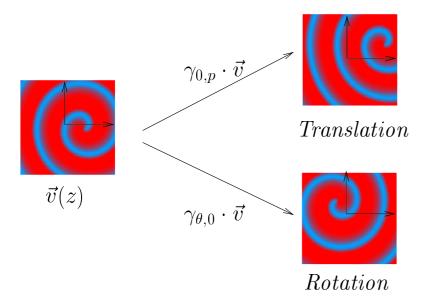
Group product:
$$(\theta_b, p_b) \cdot (\theta_a, p_a) = (\theta_a + \theta_b, p_b + e^{i\theta_b}p_a)$$

Induced SE(2) – action on \mathcal{X}



$$(\gamma_{\theta,p}\cdot\vec{v})(z)\equiv\vec{v}(\gamma_{\theta,p}^{-1}\,z)$$

Example of group action:



$$\varphi(t, \gamma \cdot \vec{v}) = \gamma \cdot \varphi(t, \vec{v}), \ \forall \gamma \in \mathbb{SE}(2), \ \forall \vec{v} \in \mathcal{X}, \ \forall \, t > 0$$

$$\varphi(t, \gamma \cdot \vec{v}) = \gamma \cdot \varphi(t, \vec{v}), \ \forall \gamma \in \mathbb{SE}(2), \ \forall \vec{v} \in \mathcal{X}, \ \forall \, t > 0$$

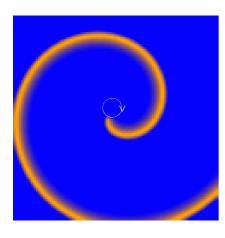
Consequence:

If
$$\vec{u}(t, x, y)$$
 is a solution of (RD),

then so is
$$\vec{u}_{\gamma}(t, x, y) \equiv \gamma \cdot \vec{u}(t, x, y), \ \forall \gamma \in \mathbb{SE}(2)$$

Relative equilibria

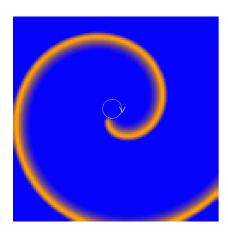
Rotating wave:



$$\vec{u}(t,z) = \gamma_{\omega t,0} \cdot \vec{u}^* = \vec{u}^*(e^{-i\omega t}z)$$
for some $\vec{u}^* \in \mathcal{X}$

Time evolution = uniform rigid spatial rotation

Rotating wave:



$$\vec{u}(t,z) = \gamma_{\omega t,0} \cdot \vec{u}^* = \vec{u}^*(e^{-i\omega t}z)$$
for some $\vec{u}^* \in \mathcal{X}$

Time evolution = uniform rigid spatial rotation

$$\omega\left(y\frac{\partial \vec{u}^*}{\partial x}(x,y) - x\frac{\partial \vec{u}^*}{\partial y}(x,y)\right) = D \cdot \nabla^2 \vec{u}^*(x,y) + \mathcal{F}(\vec{u}^*(x,y))$$

Group orbit: $\mathcal{Y} \equiv \{\, \gamma \cdot \vec{u}^* \,|\, \gamma \in \, \mathbb{SE}(2) \,\} \subset \mathcal{X}$

Group orbit: $\mathcal{Y} \equiv \{\, \gamma \cdot \vec{u}^* \,|\, \gamma \in \, \mathbb{SE}(2) \,\} \subset \mathcal{X}$ $\mathcal{Y} \cong \mathbb{S}^1 \times \mathbb{C}$

Group orbit: $\mathcal{Y} \equiv \{ \ \gamma \cdot \vec{u}^* \ | \ \gamma \in \mathbb{SE}(2) \ \} \subset \mathcal{X}$ $\mathcal{Y} \cong \mathbb{S}^1 \times \mathbb{C}$

 ${\mathcal Y}$ is a 3-d manifold, invariant for φ

Group orbit: $\mathcal{Y} \equiv \{\, \gamma \cdot \vec{u}^* \, | \, \gamma \in \, \mathbb{SE}(2) \, \} \subset \mathcal{X}$

 $\mathcal{Y}\cong\mathbb{S}^1 imes\mathbb{C}$

 ${\mathcal Y}$ is a 3-d manifold, invariant for φ

 ${\mathcal Y}$ is called a relative equilibrium

Group orbit:
$$\mathcal{Y} \equiv \{ \gamma \cdot \vec{u}^* \mid \gamma \in \mathbb{SE}(2) \} \subset \mathcal{X}$$

 $\mathcal{Y} \cong \mathbb{S}^1 \times \mathbb{C}$
 \mathcal{Y} is a 3-d manifold, invariant for φ
 \mathcal{Y} is called a relative equilibrium

Dynamics of the semi-flow φ on $\mathcal Y$ are described by ODEs

$$\begin{array}{rcl}
\dot{\theta} &=& \omega \\
\dot{p} &=& 0
\end{array}$$

Describes motion of spiral "tip"

Group orbit:
$$\mathcal{Y} \equiv \{ \gamma \cdot \vec{u}^* \mid \gamma \in \mathbb{SE}(2) \} \subset \mathcal{X}$$

 $\mathcal{Y} \cong \mathbb{S}^1 \times \mathbb{C}$
 \mathcal{Y} is a 3-d manifold, invariant for φ
 \mathcal{Y} is called a relative equilibrium

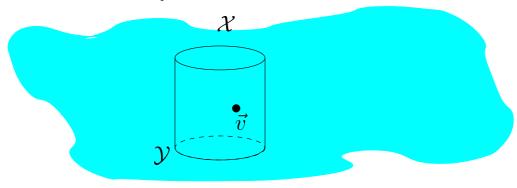
Dynamics of the semi-flow φ on ${\mathcal Y}$ are described by ODEs

$$\dot{ heta} = \omega$$
 Describes motion $\dot{p} = 0$ of spiral "tip"

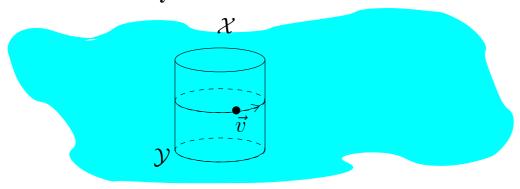
$$\theta(t) = \omega t + \omega_0, \ p(t) = p_0$$

Rotation about p_0 with frequency ω

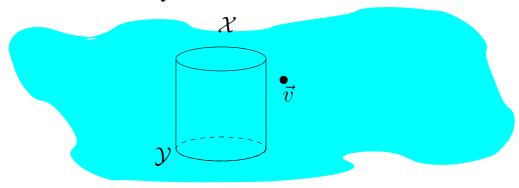
Bifurcation to meandering



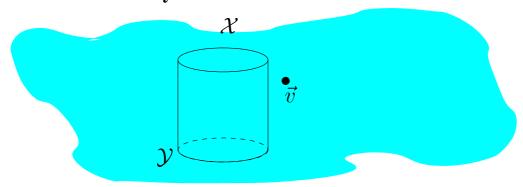
If you start (initial condition) on $\mathcal{Y}\dots$



If you start (initial condition) on \mathcal{Y} ... you stay on \mathcal{Y} for all t>0 $(\varphi(t,\mathcal{Y})\subset\mathcal{Y})$



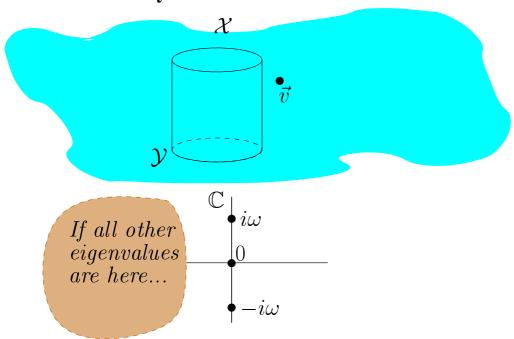
What if the initial condition is off (but close to) \mathcal{Y} ?

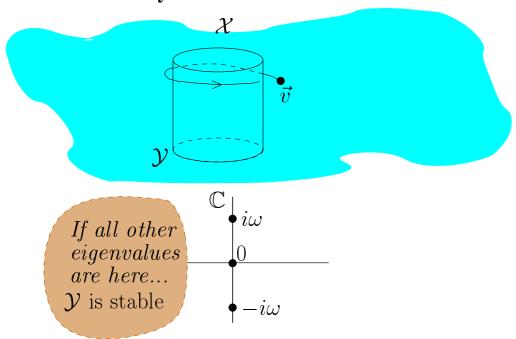


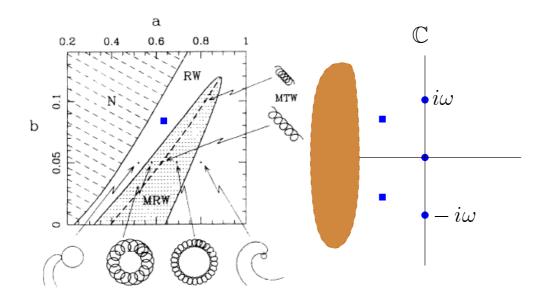
To answer this question, need to consider the eigenvalue problem $\mathcal{L}\vec{u}=\lambda\vec{u}$

$$\mathcal{L} = D \cdot \nabla^2 + d\mathcal{F}(\vec{u}^*) - \omega \left(y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} \right)$$

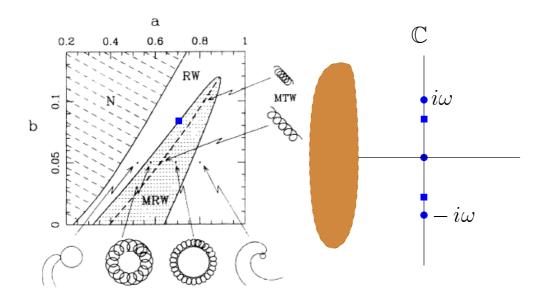




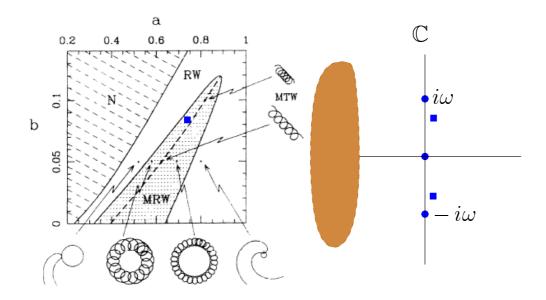




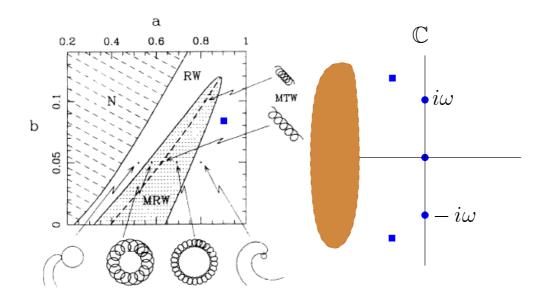
D. Barkley (1994) PRL
Numerical simulation of a model for cardiac electrophysiology



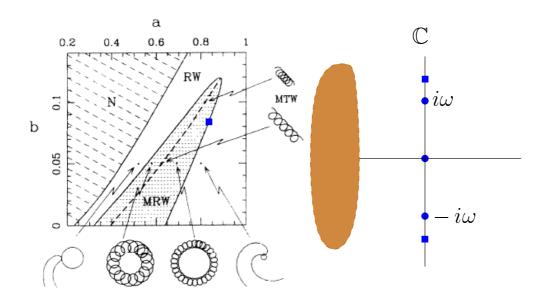
D. Barkley (1994) PRL
Numerical simulation of a model for cardiac electrophysiology



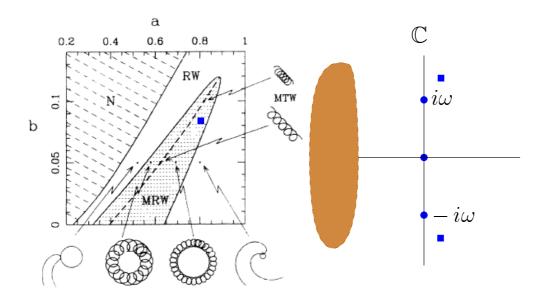
D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology



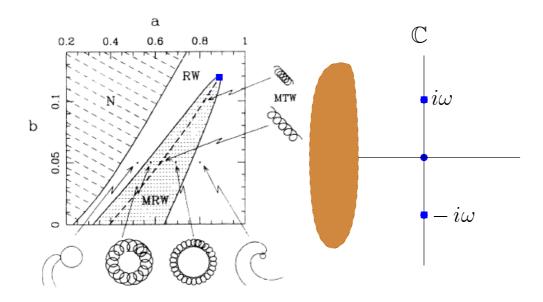
D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology



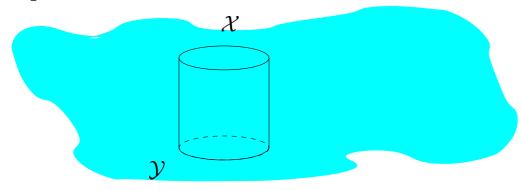
D. Barkley (1994) PRL
Numerical simulation of a model for cardiac electrophysiology



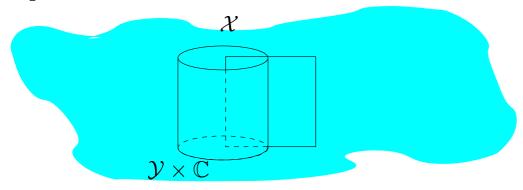
D. Barkley (1994) PRL
Numerical simulation of a model for cardiac electrophysiology



D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology

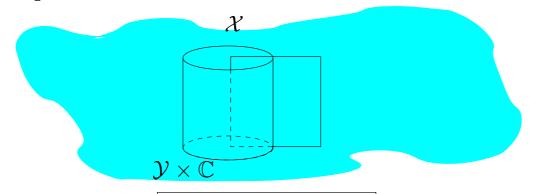


If \mathcal{L} has eigenvalues $0, \pm i\omega, \pm i\Omega$ and all other eigenvalues bounded away from imaginary axis in left-plane...



If \mathcal{L} has eigenvalues $0, \pm i\omega, \pm i\Omega$ and all other eigenvalues bounded away from imaginary axis in left-plane...

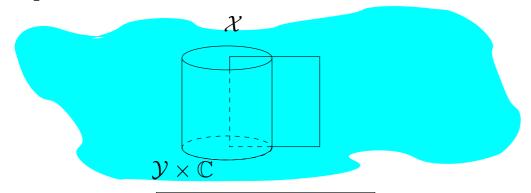
 \exists invariant 5-d "center-bundle" $\mathcal{Y} \times \mathbb{C}$ which is stable, and dynamics of φ on $\mathcal{Y} \times \mathbb{C}$ reduce to...



$$\begin{array}{rcl} \dot{\theta} &=& \omega + F^{\theta}(q,\bar{q}) \\ \dot{p} &=& e^{i\theta}F^{p}(q,\bar{q}) \\ \dot{q} &=& F^{q}(q,\bar{q}) \end{array}$$

$$F^{\theta}(0,0) = 0, \ F^{p}(0,0) = 0, \ F^{q}(0,0) = 0$$

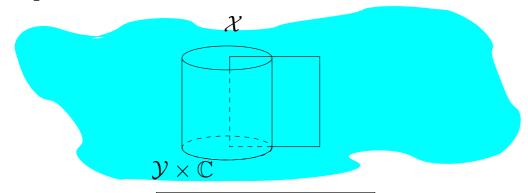
 $d_{q}F^{q}(0,0) = i\Omega, \ d_{\bar{q}}F^{q}(0,0) = 0$



$$\dot{ heta} = \omega + F^{\theta}(q, \bar{q})$$
 $\dot{p} = e^{i\theta}F^{p}(q, \bar{q})$
 $\dot{q} = F^{q}(q, \bar{q})$

$$F^{\theta}(0,0) = 0, \ F^{p}(0,0) = 0, \ F^{q}(0,0) = 0$$

 $d_{q}F^{q}(0,0) = i\Omega, \ d_{\bar{q}}F^{q}(0,0) = 0$



$$\dot{ heta} = \omega + F^{ heta}(q, \bar{q})$$
 $\dot{p} = e^{i\theta}F^{p}(q, \bar{q})$
 $\dot{q} = F^{q}(q, \bar{q})$

$$F^{\theta}(0,0) = 0, \ F^{p}(0,0) = 0, \ F^{q}(0,0) = 0$$

 $d_{q}F^{q}(0,0) = i\Omega, \ d_{\bar{q}}F^{q}(0,0) = 0$

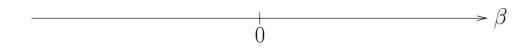
Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000)

Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000)

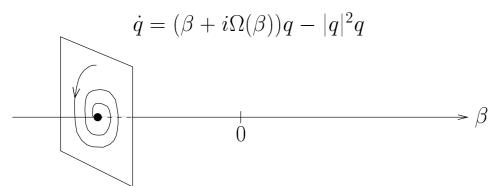
$$\dot{q} = (\beta + i\Omega(\beta))q - |q|^2 q$$

Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000)

$$\dot{q} = (\beta + i\Omega(\beta))q - |q|^2 q$$

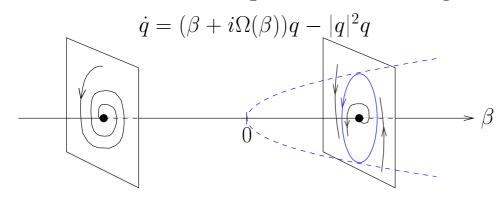


Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000)



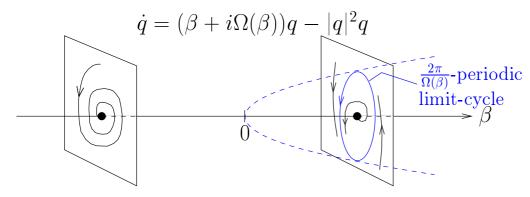
Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000)

$$\begin{array}{cccc} \dot{\theta} &=& \omega + F^{\theta}(q, \bar{q}, \beta) \\ \dot{p} &=& e^{i\theta} F^{p}(q, \bar{q}, \beta) \\ \dot{q} &=& F^{q}(q, \bar{q}, \beta) \end{array} \quad \beta \equiv \begin{array}{c} \text{bifurcation} \\ \text{parameter} \end{array}$$

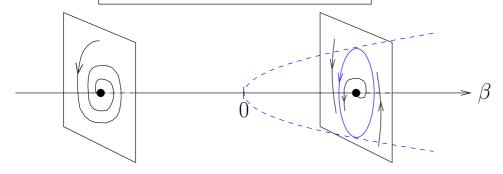


Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000)

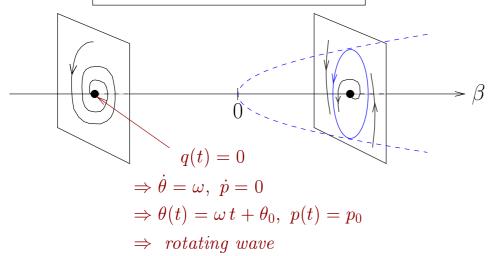
$$\begin{array}{cccc} \dot{\theta} &=& \omega + F^{\theta}(q, \bar{q}, \beta) \\ \dot{p} &=& e^{i\theta} F^{p}(q, \bar{q}, \beta) \\ \dot{q} &=& F^{q}(q, \bar{q}, \beta) \end{array} \quad \beta \equiv \begin{array}{c} \text{bifurcation} \\ \text{parameter} \end{array}$$

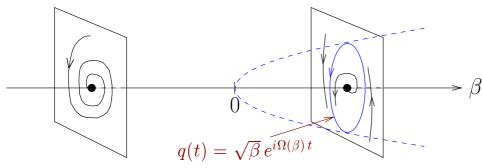


$$\begin{array}{ll} \dot{\theta} &=& \omega + F^{\theta}(q(t), \bar{q}(t), \beta) \\ \dot{p} &=& e^{i\theta(t)} F^{p}(q(t), \bar{q}(t), \beta) \end{array}$$



$$\dot{\theta} = \omega + F^{\theta}(q(t), \bar{q}(t), \beta)
\dot{p} = e^{i\theta(t)} F^{p}(q(t), \bar{q}(t), \beta)$$





 $q(t) = \sqrt{\beta} \, \widehat{e^{i\Omega(\beta)}}{}^t$

$$\theta(t) = \omega t + \sum_{k \in \mathbb{Z}} A_k(\beta) e^{ik\Omega(\beta) t}$$

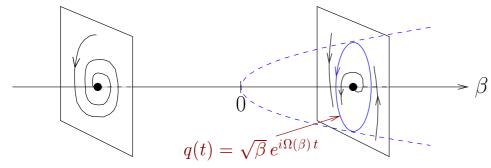
$$\dot{\theta} = \omega + F^{\theta}(q(t), \bar{q}(t), \beta)$$

$$\dot{p} = e^{i\theta(t)} F^{p}(q(t), \bar{q}(t), \beta)$$

$$q(t) = \sqrt{\beta} e^{i\Omega(\beta)t}$$

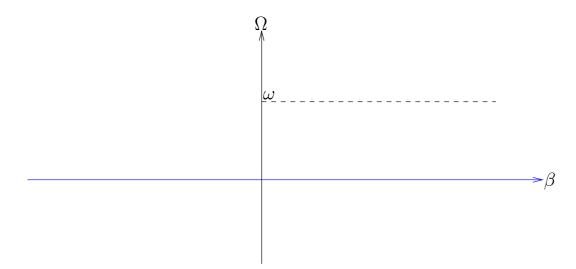
$$\theta(t) = \omega t + \sum_{k \in \mathbb{Z}} A_k(\beta) e^{ik\Omega(\beta)t} \quad \dot{p}(t) = e^{i\omega t} \sum_{k \in \mathbb{Z}} B_k(\beta) e^{ik\Omega(\beta)t}$$

$$\dot{\theta} = \omega + F^{\theta}(q(t), \bar{q}(t), \beta)
\dot{p} = e^{i\theta(t)} F^{p}(q(t), \bar{q}(t), \beta)$$

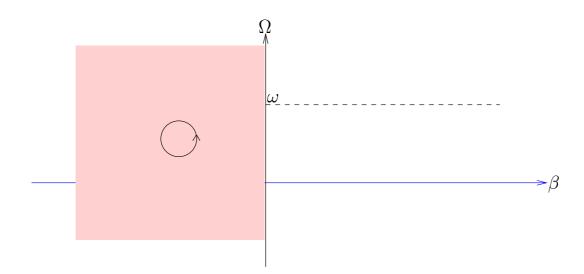


$$\theta(t) = \omega t + \sum_{k \in \mathbb{Z}} A_k(\beta) e^{ik\Omega(\beta)t} \quad \dot{p}(t) = e^{i\omega t} \sum_{k \in \mathbb{Z}} B_k(\beta) e^{ik\Omega(\beta)t}$$

$$p(t) = \begin{cases} \sum_{k \in \mathbb{Z}} \frac{B_k(\beta)}{i(\omega + k\Omega(\beta))} e^{i(\omega + k\Omega(\beta))t} & \text{if } \omega/\Omega(\beta) \notin \mathbb{Z} \\ B_{-1}(\beta)t + \sum_{k \in \mathbb{Z}, k \neq -1} \frac{B_k(\beta)}{i(k+1)} e^{i(k+1)\omega t} & \text{if } \Omega(\beta) = \omega \end{cases}$$



$$\theta(t) = \omega t + \theta_0$$
$$p(t) = p_0$$



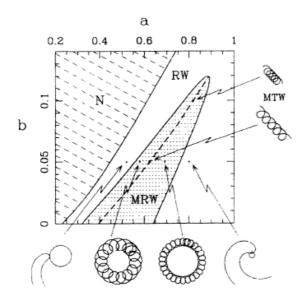
$$\theta(t) = \omega t + \sum_{k \in \mathbb{Z}} A_k(\beta) e^{ik\Omega(\beta)t}$$

$$p(t) = \begin{cases} \sum_{k \in \mathbb{Z}} \frac{B_k(\beta)}{i(\omega + k\Omega(\beta))} e^{i(\omega + k\Omega(\beta))t} & \text{if } \omega/\Omega(\beta) \notin \mathbb{Z} \\ B_{-1}(\beta)t + \sum_{k \in \mathbb{Z}, k \neq -1} \frac{B_k(\beta)}{i(k+1)} e^{i(k+1)\omega t} & \text{if } \Omega(\beta) = \omega \end{cases}$$

$$\theta(t) = \omega \, t + \sum_{k \in \mathbb{Z}} A_k(\beta) \, e^{ik\Omega(\beta) \, t}$$

$$p(t) = \begin{cases} \sum_{k \in \mathbb{Z}} \frac{B_k(\beta)}{i(\omega + k\Omega(\beta))} \, e^{i(\omega + k\Omega(\beta))t} & \text{if } \omega/\Omega(\beta) \notin \mathbb{Z} \\ B_{-1}(\beta) t + \sum_{k \in \mathbb{Z}, k \neq -1} \frac{B_k(\beta)}{i(k+1)} e^{i(k+1)\omega \, t} & \text{if } \Omega(\beta) = \omega \end{cases}$$

Transition to meandering



D. Barkley (1994) PRL
Numerical simulation of a model for cardiac electrophysiology

Transition to meandering

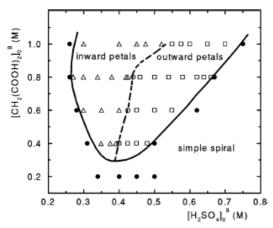


FIG. 4. Dynamics of spirals as a function of $[H_2SO_4]_0^B$ and $[CH_2(COOH)_2]_0^B$ (with other conditions as in Fig. 1). The solid line marks the transition from simple spirals (\blacksquare) to meandering spirals with inward (\triangle) and outward (\square) petals. Traveling spirals (\bigcirc) exist along the dashed line that separates the two types of meandering spirals.

Li, Ouyang, Petrov & Swinney (1996) PRL Actual chemical reaction

Broken symmetry

In reality, Euclidean symmetry is NEVER exact:	

In reality, Euclidean symmetry is NEVER exact:

Boundaries and inhomogeneities break translational symmetry

In reality, Euclidean symmetry is NEVER exact:

- Boundaries and inhomogeneities break translational symmetry
- Anisotropy breaks rotational symmetry (especially relevant in cardiac tissue)

In reality, Euclidean symmetry is NEVER exact:

- Boundaries and inhomogeneities break translational symmetry
- Anisotropy breaks rotational symmetry (especially relevant in cardiac tissue)
- Experiments confirm effects of symmetry breaking :

Boundary drifting (Zykov & Muller)

Spiral anchoring (Munuzuri et al., Jalife et al.)

Phase locking / drifting of meandering waves in anisotropic tissue (Roth)

We can explain these experimentally observed phenomena using finite-dimensional center-bundle ODEs (forced symmetry-breaking) similarly to what was presented here

> LeBlanc & Wulff, JNS (2000) LeBlanc (2002)

and make some predictions which were verified experimentally

LeBlanc & Roth (2003)

Conclusions and ongoing work

Model-independent approach

characterize the fundamental dynamical properties of spiral waves

Model-independent approach

characterize the fundamental dynamical properties of spiral waves

Uses techniques from many fields of mathematics

group theory, representation theory, functional analysis, differential geometry, dynamical systems, bifurcation theory

Model-independent approach

characterize the fundamental dynamical properties of spiral waves

Uses techniques from many fields of mathematics

group theory, representation theory, functional analysis, differential geometry, dynamical systems, bifurcation theory

Current and future work includes

combined forced symmetry—breaking spiral waves in spherical and quasi—spherical domains scroll waves in 3-d media

Ottawa-Carleton Institute

- Applied Mathematics
- Logic and Foundations of Computing, Discrete Maths
- Algebra
- Analysis
- Stats and Probability
- Topology and Geometry
- Number Theory

Euclidean Symmetry and the Dynamics of Spiral Waves

Victor G. LeBlanc
Department of Mathematics and Statistics
University of Ottawa
Ottawa, ON K1N 6N5
vleblanc@uottawa.ca
http://aix1.uottawa.ca/~vleblanc