Euclidean Symmetry and the Dynamics of Spiral Waves Victor G. LeBlanc Department of Mathematics and Statistics University of Ottawa Ottawa, ON K1N 6N5 vleblanc@uottawa.ca http://aix1.uottawa.ca/~vleblanc ### **Outline** - Waves - Spirals - Euclidean symmetry - Relative equilibria - Bifurcation to meandering - Broken symmetry - Conclusions and ongoing work ### Waves - Wave = Pattern in space which evolves over time - Pervade every aspect of our lives: light, microwaves, radio waves ... atmospheric pressure waves influence weather physiological waves keep you alive! e.g. electric wave causes heart beat #### Some examples of 2-d waves: #### Plane waves $$t=0 \ snapshot$$ **e.g.** $$u(x, y, t) = e^{-\frac{1}{10}(x+3y-t)^2}$$ #### • Target pattern waves $$t = 0 \ snapshot$$ **e.g.** $$u(x, y, t) = \sin(\sqrt{x^2 + y^2} - t)$$ ### **Spirals** ### Snapshot of a spiral wave (seen from above): #### Spiral waves are observed in: - certain types of chemical reactions (Belousov-Zhabotinsky) - slime-mold aggregates - cardiac tissue (may lead to fatal arrythmias) - other excitable media (including biological tissue) #### Spiral waves are observed in: - certain types of chemical reactions (Belousov-Zhabotinsky) - slime-mold aggregates - cardiac tissue (may lead to fatal arrythmias) - other excitable media (including biological tissue) "...spirals on the heart are fatal, spirals on the cerebral cortex may lead to epileptic seizures, and spirals on the retina may cause hallucinations" — Mathematical Physiology J. Keener & J. Sneyd, P. 305 #### How do (isolated) spirals move? (A. Winfree) - rigid uniform rotation - quasi-periodic meandering - linear drifting - hypermeander (chaotic?) • #### **Transition to meandering** D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology #### Transition to meandering FIG. 4. Dynamics of spirals as a function of $[H_2SO_4]_0^B$ and $[CH_2(COOH)_2]_0^B$ (with other conditions as in Fig. 1). The solid line marks the transition from simple spirals (\blacksquare) to meandering spirals with inward (\triangle) and outward (\square) petals. Traveling spirals (\bigcirc) exist along the dashed line that separates the two types of meandering spirals. #### Li, Ouyang, Petrov & Swinney (1996) PRL Actual chemical reaction | I I alisitivii to ilicaliuci ili | Transition | to | meand | lerin | Q | |----------------------------------|------------|----|-------|-------|---| |----------------------------------|------------|----|-------|-------|---| Phenomenon appears to be model independent! ### **Euclidean symmetry** ## Mathematical models of phenomena where spirals are observed are (typically) reaction-diffusion PDEs ---> nonlinear! (can not solve them exactly) ### Mathematical models of phenomena where spirals are observed are (typically) reaction—diffusion PDEs --> nonlinear! (can not solve them exactly) #### e.g. Belousov-Zhabotinsky chemical reaction two species, concentrations $$\begin{array}{c} u = u(x, y, t) \\ v = v(x, y, t) \end{array}$$ $$\frac{\partial u}{\partial t} = D_u \nabla^2 u + \frac{1}{\varepsilon} \left(u - u^2 - f v \frac{u - q}{v - q} \right)$$ $$\frac{\partial v}{\partial t} = D_v \nabla^2 v + (u - v)$$ N.B. $$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$ ### Mathematical models of phenomena where spirals are observed are (typically) reaction-diffusion PDEs --> nonlinear! (can not solve them exactly) #### e.g. Belousov-Zhabotinsky chemical reaction two species, concentrations $\begin{array}{c} u = u(x,y,t) \\ v = v(x,y,t) \end{array}$ $$\frac{\partial u}{\partial t} = \left[D_u \nabla^2 u \right] + \left[\frac{1}{\varepsilon} \left(u - u^2 - f v \frac{u - q}{v - q} \right) \right]$$ $$\frac{\partial v}{\partial t} = \left[D_v \nabla^2 v \right] + \left[(u - v) \right]$$ $$diffusion$$ reaction N.B. $$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$ ### Mathematical models of phenomena where spirals are observed are (typically) reaction-diffusion PDEs --> nonlinear! (can not solve them exactly) #### e.g. FitzHugh-Nagumo (electric waves in biological tissue) electric potential $\Phi = \Phi(x,y,t)$ recovery function v = v(x,y,t) $\frac{\partial \Phi}{\partial t} = \nabla^2 \Phi + \frac{1}{\varepsilon} \left(\Phi - \frac{\Phi^3}{3} - v \right)$ $$\frac{\partial v}{\partial t} = \varepsilon (\Phi + \beta - \gamma v)$$ N.B. $$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$ #### General class of models $$\vec{u} = (u_1(x,y,t),\ldots,u_n(x,y,t))$$ $$\frac{\partial \vec{u}}{\partial t} = D \cdot \nabla^2 \vec{u} + \mathcal{F}(\vec{u})$$ (RD) $D = n \times n$ matrix of diffusion constants $\mathcal{F}: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ "smooth enough" (RD) defines a <u>dynamical system</u> on a suitable space of functions : $\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \longrightarrow \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}$ (RD) defines a <u>dynamical system</u> on a suitable space of functions : $\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \longrightarrow \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}$ of functions: $\overline{\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \longrightarrow \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}}$ of functions: $\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \longrightarrow \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}$ of functions: $\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \longrightarrow \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}$ $$\vec{u}(x, y, t) = \varphi(t, \vec{v}_0) \equiv \text{ solution curve of (RD)}$$ $\varphi : \mathbb{R}^+ \times \mathcal{X} \longrightarrow \mathcal{X} \text{ (flow map)}$ $\varphi(0, \vec{v}_0) = \vec{v}_0 \text{ (initial condition)}$ of functions: $\mathcal{X} = \{ \vec{v} : \mathbb{R}^2 \stackrel{-}{\longrightarrow} \mathbb{R}^n \mid \vec{v} \text{ satisfies } \dots \}$ $$\vec{u}(x, y, t) = \varphi(t, \vec{v}_0) \equiv \text{ solution curve of (RD)}$$ $\varphi : \mathbb{R}^+ \times \mathcal{X} \longrightarrow \mathcal{X} \text{ (flow map)}$ $\varphi(0, \vec{v}_0) = \vec{v}_0 \text{ (initial condition)}$ $\varphi(t_1 + t_2, \cdot) = \varphi(t_1, \varphi(t_2, \cdot)) \text{ (semi-flow property)}$ $\mathbb{SE}(2) \equiv \text{special Euclidean group action on } \mathbb{R}^2$ $$(\gamma_{\theta,p_1,p_2}) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$ $$rotation$$ $$translation$$ $\mathbb{SE}(2) \equiv \text{special Euclidean group action on } \mathbb{R}^2$ $$(\gamma_{\theta,p_1,p_2}) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$ $$rotation$$ $$translation$$ Complex notation: $$z = x + iy, \ p = p_1 + ip_2$$ $\gamma_{\theta,p} z = e^{i\theta} z + p \quad (\theta, p) \in \mathbb{S}^1 \times \mathbb{C}$ $\mathbb{SE}(2) \equiv \text{special Euclidean group action on } \mathbb{R}^2$ $$(\gamma_{\theta,p_1,p_2}) \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$ rotation $$translation$$ Complex notation: $$z = x + iy, \ p = p_1 + ip_2$$ $\gamma_{\theta,p} z = e^{i\theta} z + p \quad (\theta, p) \in \mathbb{S}^1 \times \mathbb{C}$ Group product: $$(\theta_b, p_b) \cdot (\theta_a, p_a) = (\theta_a + \theta_b, p_b + e^{i\theta_b}p_a)$$ Induced SE(2) – action on \mathcal{X} $$(\gamma_{\theta,p}\cdot\vec{v})(z)\equiv\vec{v}(\gamma_{\theta,p}^{-1}\,z)$$ ### **Example of group action:** $$\varphi(t, \gamma \cdot \vec{v}) = \gamma \cdot \varphi(t, \vec{v}), \ \forall \gamma \in \mathbb{SE}(2), \ \forall \vec{v} \in \mathcal{X}, \ \forall \, t > 0$$ $$\varphi(t, \gamma \cdot \vec{v}) = \gamma \cdot \varphi(t, \vec{v}), \ \forall \gamma \in \mathbb{SE}(2), \ \forall \vec{v} \in \mathcal{X}, \ \forall \, t > 0$$ #### **Consequence:** If $$\vec{u}(t, x, y)$$ is a solution of (RD), then so is $$\vec{u}_{\gamma}(t, x, y) \equiv \gamma \cdot \vec{u}(t, x, y), \ \forall \gamma \in \mathbb{SE}(2)$$ ### Relative equilibria #### **Rotating wave:** $$\vec{u}(t,z) = \gamma_{\omega t,0} \cdot \vec{u}^* = \vec{u}^*(e^{-i\omega t}z)$$ for some $\vec{u}^* \in \mathcal{X}$ Time evolution = uniform rigid spatial rotation #### **Rotating wave:** $$\vec{u}(t,z) = \gamma_{\omega t,0} \cdot \vec{u}^* = \vec{u}^*(e^{-i\omega t}z)$$ for some $\vec{u}^* \in \mathcal{X}$ ## Time evolution = uniform rigid spatial rotation $$\omega\left(y\frac{\partial \vec{u}^*}{\partial x}(x,y) - x\frac{\partial \vec{u}^*}{\partial y}(x,y)\right) = D \cdot \nabla^2 \vec{u}^*(x,y) + \mathcal{F}(\vec{u}^*(x,y))$$ Group orbit: $\mathcal{Y} \equiv \{\, \gamma \cdot \vec{u}^* \,|\, \gamma \in \, \mathbb{SE}(2) \,\} \subset \mathcal{X}$ Group orbit: $\mathcal{Y} \equiv \{\, \gamma \cdot \vec{u}^* \,|\, \gamma \in \, \mathbb{SE}(2) \,\} \subset \mathcal{X}$ $\mathcal{Y} \cong \mathbb{S}^1 \times \mathbb{C}$ Group orbit: $\mathcal{Y} \equiv \{ \ \gamma \cdot \vec{u}^* \ | \ \gamma \in \mathbb{SE}(2) \ \} \subset \mathcal{X}$ $\mathcal{Y} \cong \mathbb{S}^1 \times \mathbb{C}$ ${\mathcal Y}$ is a 3-d manifold, invariant for φ Group orbit: $\mathcal{Y} \equiv \{\, \gamma \cdot \vec{u}^* \, | \, \gamma \in \, \mathbb{SE}(2) \, \} \subset \mathcal{X}$ $\mathcal{Y}\cong\mathbb{S}^1 imes\mathbb{C}$ ${\mathcal Y}$ is a 3-d manifold, invariant for φ ${\mathcal Y}$ is called a relative equilibrium Group orbit: $$\mathcal{Y} \equiv \{ \gamma \cdot \vec{u}^* \mid \gamma \in \mathbb{SE}(2) \} \subset \mathcal{X}$$ $\mathcal{Y} \cong \mathbb{S}^1 \times \mathbb{C}$ \mathcal{Y} is a 3-d manifold, invariant for φ \mathcal{Y} is called a relative equilibrium Dynamics of the semi-flow φ on $\mathcal Y$ are described by ODEs $$\begin{array}{rcl} \dot{\theta} &=& \omega \\ \dot{p} &=& 0 \end{array}$$ Describes motion of spiral "tip" Group orbit: $$\mathcal{Y} \equiv \{ \gamma \cdot \vec{u}^* \mid \gamma \in \mathbb{SE}(2) \} \subset \mathcal{X}$$ $\mathcal{Y} \cong \mathbb{S}^1 \times \mathbb{C}$ \mathcal{Y} is a 3-d manifold, invariant for φ \mathcal{Y} is called a relative equilibrium Dynamics of the semi-flow φ on ${\mathcal Y}$ are described by ODEs $$\dot{ heta} = \omega$$ Describes motion $\dot{p} = 0$ of spiral "tip" $$\theta(t) = \omega t + \omega_0, \ p(t) = p_0$$ Rotation about p_0 with frequency ω # Bifurcation to meandering If you start (initial condition) on $\mathcal{Y}\dots$ If you start (initial condition) on \mathcal{Y} ... you stay on \mathcal{Y} for all t>0 $(\varphi(t,\mathcal{Y})\subset\mathcal{Y})$ What if the initial condition is off (but close to) \mathcal{Y} ? To answer this question, need to consider the eigenvalue problem $\mathcal{L}\vec{u}=\lambda\vec{u}$ $$\mathcal{L} = D \cdot \nabla^2 + d\mathcal{F}(\vec{u}^*) - \omega \left(y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} \right)$$ D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology If \mathcal{L} has eigenvalues $0, \pm i\omega, \pm i\Omega$ and all other eigenvalues bounded away from imaginary axis in left-plane... If \mathcal{L} has eigenvalues $0, \pm i\omega, \pm i\Omega$ and all other eigenvalues bounded away from imaginary axis in left-plane... \exists invariant 5-d "center-bundle" $\mathcal{Y} \times \mathbb{C}$ which is stable, and dynamics of φ on $\mathcal{Y} \times \mathbb{C}$ reduce to... $$\begin{array}{rcl} \dot{\theta} &=& \omega + F^{\theta}(q,\bar{q}) \\ \dot{p} &=& e^{i\theta}F^{p}(q,\bar{q}) \\ \dot{q} &=& F^{q}(q,\bar{q}) \end{array}$$ $$F^{\theta}(0,0) = 0, \ F^{p}(0,0) = 0, \ F^{q}(0,0) = 0$$ $d_{q}F^{q}(0,0) = i\Omega, \ d_{\bar{q}}F^{q}(0,0) = 0$ $$\dot{ heta} = \omega + F^{\theta}(q, \bar{q})$$ $\dot{p} = e^{i\theta}F^{p}(q, \bar{q})$ $\dot{q} = F^{q}(q, \bar{q})$ $$F^{\theta}(0,0) = 0, \ F^{p}(0,0) = 0, \ F^{q}(0,0) = 0$$ $d_{q}F^{q}(0,0) = i\Omega, \ d_{\bar{q}}F^{q}(0,0) = 0$ $$\dot{ heta} = \omega + F^{ heta}(q, \bar{q})$$ $\dot{p} = e^{i\theta}F^{p}(q, \bar{q})$ $\dot{q} = F^{q}(q, \bar{q})$ $$F^{\theta}(0,0) = 0, \ F^{p}(0,0) = 0, \ F^{q}(0,0) = 0$$ $d_{q}F^{q}(0,0) = i\Omega, \ d_{\bar{q}}F^{q}(0,0) = 0$ Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000) Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000) $$\dot{q} = (\beta + i\Omega(\beta))q - |q|^2 q$$ Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000) $$\dot{q} = (\beta + i\Omega(\beta))q - |q|^2 q$$ Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000) Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000) $$\begin{array}{cccc} \dot{\theta} &=& \omega + F^{\theta}(q, \bar{q}, \beta) \\ \dot{p} &=& e^{i\theta} F^{p}(q, \bar{q}, \beta) \\ \dot{q} &=& F^{q}(q, \bar{q}, \beta) \end{array} \quad \beta \equiv \begin{array}{c} \text{bifurcation} \\ \text{parameter} \end{array}$$ Golubitsky, LeBlanc & Melbourne, JNS (1997, 2000) $$\begin{array}{cccc} \dot{\theta} &=& \omega + F^{\theta}(q, \bar{q}, \beta) \\ \dot{p} &=& e^{i\theta} F^{p}(q, \bar{q}, \beta) \\ \dot{q} &=& F^{q}(q, \bar{q}, \beta) \end{array} \quad \beta \equiv \begin{array}{c} \text{bifurcation} \\ \text{parameter} \end{array}$$ $$\begin{array}{ll} \dot{\theta} &=& \omega + F^{\theta}(q(t), \bar{q}(t), \beta) \\ \dot{p} &=& e^{i\theta(t)} F^{p}(q(t), \bar{q}(t), \beta) \end{array}$$ $$\dot{\theta} = \omega + F^{\theta}(q(t), \bar{q}(t), \beta) \dot{p} = e^{i\theta(t)} F^{p}(q(t), \bar{q}(t), \beta)$$ $q(t) = \sqrt{\beta} \, \widehat{e^{i\Omega(\beta)}}{}^t$ $$\theta(t) = \omega t + \sum_{k \in \mathbb{Z}} A_k(\beta) e^{ik\Omega(\beta) t}$$ $$\dot{\theta} = \omega + F^{\theta}(q(t), \bar{q}(t), \beta)$$ $$\dot{p} = e^{i\theta(t)} F^{p}(q(t), \bar{q}(t), \beta)$$ $$q(t) = \sqrt{\beta} e^{i\Omega(\beta)t}$$ $$\theta(t) = \omega t + \sum_{k \in \mathbb{Z}} A_k(\beta) e^{ik\Omega(\beta)t} \quad \dot{p}(t) = e^{i\omega t} \sum_{k \in \mathbb{Z}} B_k(\beta) e^{ik\Omega(\beta)t}$$ $$\dot{\theta} = \omega + F^{\theta}(q(t), \bar{q}(t), \beta) \dot{p} = e^{i\theta(t)} F^{p}(q(t), \bar{q}(t), \beta)$$ $$\theta(t) = \omega t + \sum_{k \in \mathbb{Z}} A_k(\beta) e^{ik\Omega(\beta)t} \quad \dot{p}(t) = e^{i\omega t} \sum_{k \in \mathbb{Z}} B_k(\beta) e^{ik\Omega(\beta)t}$$ $$p(t) = \begin{cases} \sum_{k \in \mathbb{Z}} \frac{B_k(\beta)}{i(\omega + k\Omega(\beta))} e^{i(\omega + k\Omega(\beta))t} & \text{if } \omega/\Omega(\beta) \notin \mathbb{Z} \\ B_{-1}(\beta)t + \sum_{k \in \mathbb{Z}, k \neq -1} \frac{B_k(\beta)}{i(k+1)} e^{i(k+1)\omega t} & \text{if } \Omega(\beta) = \omega \end{cases}$$ $$\theta(t) = \omega t + \theta_0$$ $$p(t) = p_0$$ $$\theta(t) = \omega t + \sum_{k \in \mathbb{Z}} A_k(\beta) e^{ik\Omega(\beta)t}$$ $$p(t) = \begin{cases} \sum_{k \in \mathbb{Z}} \frac{B_k(\beta)}{i(\omega + k\Omega(\beta))} e^{i(\omega + k\Omega(\beta))t} & \text{if } \omega/\Omega(\beta) \notin \mathbb{Z} \\ B_{-1}(\beta)t + \sum_{k \in \mathbb{Z}, k \neq -1} \frac{B_k(\beta)}{i(k+1)} e^{i(k+1)\omega t} & \text{if } \Omega(\beta) = \omega \end{cases}$$ $$\theta(t) = \omega \, t + \sum_{k \in \mathbb{Z}} A_k(\beta) \, e^{ik\Omega(\beta) \, t}$$ $$p(t) = \begin{cases} \sum_{k \in \mathbb{Z}} \frac{B_k(\beta)}{i(\omega + k\Omega(\beta))} \, e^{i(\omega + k\Omega(\beta))t} & \text{if } \omega/\Omega(\beta) \notin \mathbb{Z} \\ B_{-1}(\beta) t + \sum_{k \in \mathbb{Z}, k \neq -1} \frac{B_k(\beta)}{i(k+1)} e^{i(k+1)\omega \, t} & \text{if } \Omega(\beta) = \omega \end{cases}$$ #### **Transition to meandering** D. Barkley (1994) PRL Numerical simulation of a model for cardiac electrophysiology #### Transition to meandering FIG. 4. Dynamics of spirals as a function of $[H_2SO_4]_0^B$ and $[CH_2(COOH)_2]_0^B$ (with other conditions as in Fig. 1). The solid line marks the transition from simple spirals (\blacksquare) to meandering spirals with inward (\triangle) and outward (\square) petals. Traveling spirals (\bigcirc) exist along the dashed line that separates the two types of meandering spirals. #### Li, Ouyang, Petrov & Swinney (1996) PRL Actual chemical reaction ### **Broken symmetry** | In reality, Euclidean symmetry is NEVER exact: | | |--|--| In reality, Euclidean symmetry is NEVER exact: Boundaries and inhomogeneities break translational symmetry In reality, Euclidean symmetry is NEVER exact: - Boundaries and inhomogeneities break translational symmetry - Anisotropy breaks rotational symmetry (especially relevant in cardiac tissue) #### In reality, Euclidean symmetry is NEVER exact: - Boundaries and inhomogeneities break translational symmetry - Anisotropy breaks rotational symmetry (especially relevant in cardiac tissue) - Experiments confirm effects of symmetry breaking : Boundary drifting (Zykov & Muller) Spiral anchoring (Munuzuri et al., Jalife et al.) Phase locking / drifting of meandering waves in anisotropic tissue (Roth) We can explain these experimentally observed phenomena using finite-dimensional center-bundle ODEs (forced symmetry-breaking) similarly to what was presented here > LeBlanc & Wulff, JNS (2000) LeBlanc (2002) and make some predictions which were verified experimentally LeBlanc & Roth (2003) # Conclusions and ongoing work #### Model-independent approach characterize the fundamental dynamical properties of spiral waves #### Model-independent approach characterize the fundamental dynamical properties of spiral waves #### Uses techniques from many fields of mathematics group theory, representation theory, functional analysis, differential geometry, dynamical systems, bifurcation theory #### Model-independent approach characterize the fundamental dynamical properties of spiral waves #### Uses techniques from many fields of mathematics group theory, representation theory, functional analysis, differential geometry, dynamical systems, bifurcation theory #### Current and future work includes combined forced symmetry—breaking spiral waves in spherical and quasi—spherical domains scroll waves in 3-d media #### **Ottawa-Carleton Institute** - Applied Mathematics - Logic and Foundations of Computing, Discrete Maths - Algebra - Analysis - Stats and Probability - Topology and Geometry - Number Theory ## **Euclidean Symmetry and the Dynamics of Spiral Waves** Victor G. LeBlanc Department of Mathematics and Statistics University of Ottawa Ottawa, ON K1N 6N5 vleblanc@uottawa.ca http://aix1.uottawa.ca/~vleblanc