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• cluster genes or samples using microarray

expression data

• motivated by a multivariate analysis of vari-

ance model

• computationally based on eigenanalysis (thus

the term “spectral” in the title)

• A leukemia data set is analyzed
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Microarray Technology

• allows investigation of RNA expression of

thousands of genes simultaneously

• cluster analysis is used to reduce the di-

mension of the data and discern meaning-

ful patterns

• eg. partition the samples into groups whose

genes express similarly

• eg. partition the genes so the genes in a

group covary across samples

• exploratory in nature

2



Microarray Data

• N genes g1, · · · , gN

• T samples (arrays) t1, · · · , tT which corre-

spond to replicates, cell lines or experimen-

tal conditions

• The data is represented as the N×T matrix

X∗ = (x∗ij), where the rows correspond to

genes and columns to the arrays

• We will work with a transformed matrix

X = (xij) formed by subtracting the row

mean from each row of X∗
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Example Microarray Data

• Golub et al. (1999) studied the gene ex-

pression of acute leukemia

• 3571 genes on arrays from 11 AML, 19 B-

ALL and 8 T-ALL independent tissue sam-

ples

• http://statwww.epfl.ch/davison/teaching/

Microarrays/lab/classification.html
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Motivation for Method

we model the gene expression measurements
as a multivariate analysis of variance

X = 1 ⊗ α′ + ZB + error

where

• each row of X (gene) is a multivariate ob-
servation of T components

• 1 is a N-vector of ones

• α is a T -vector of mean levels for the columns
of X

• Z is a N × p design matrix whose columns
are orthogonal to 1 and to each other

• B is a p × T parameter matrix
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Algorithm (in terms of genes)

• construct a design matrix for the gene ex-

pression measurements

• The design matrix defines the clusters

• columns of Z are defined by a stepwise

process

• construct the first column Z(1) of Z by

splitting the genes into two groups

• Z(1) is the contrast comparing the groups;

by definition Z(1) is orthogonal and length

1 to 1
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• These conditions imply that the dichoto-

mous elements of Z(1) are given by

Z(1)i =

√
n2

n1N
gene i in group 1

Z(1)i = −
√

n1

n2N
gene i in group 2

i.e. positive for group 1, negative for group 2

• first row of B is the least squares regression

coefficient estimate b′
(1) corresponding to

Z(1)
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• We construct the grouping to maximize the

magnitude of the regression parameter b(1)

• The second column of Z, Z(2), is formed

by further splitting the genes in the first

group of n1 genes into two smaller groups,

maximizing b(2)

• The third column of Z, Z(3), is formed by

further splitting the genes in the second

group of n2 genes into two smaller groups

• and so on: at each step a subset of genes

is partitioned

• the result is a set of orthogonal contrasts

which determine the clusters
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Properties of the Algorithm

some definitions:

• At the step where Z(q) is constructed, de-

note X(q) to be the matrix X adjusted by

subtracting the centroid of the genes being

split

• Define S = (sij) to be the covariance ma-

trix corresponding to X(q)

• define ḡ1 and ḡ2 be the mean T -vectors of

the genes in the groups being formed
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Equivalent Local Clustering Criteria

We have the following equivalence:

Theorem: The criteria

C1: b′
(q)b(q)

C2: Z ′
(q)X

(q)X(q)′Z(q)

C3: nn1
n

n2
n (ḡ1 − ḡ2)

′(ḡ1 − ḡ2)

C4: nT n1
n

n2
n ( 1

n2
1

∑
i,j∈G1

sij + 1
n2
2

∑
i,j∈G2

sij

−2 1
n1n2

∑
i∈G1,j∈G2

sij)

are equivalent.
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Continuous Approximation

Generating the Z(q) which maximizes the mag-
nitude of the associated parameter vector b(q)
is combinatorially hard

We convert the discrete problem to an easily
solved continuous one:

•

b′
(q)b(q) = Z ′

(q)X
(q)X(q)′Z(q)

• the continuous-valued vector v which max-
imizes v′X(q)X(q)′v subject to v′v = 1 is
the normalized eigenvector corresponding
to the largest eigenvalue of X(q)X(q)′

• use v as a surrogate for Z(q) and parti-
tion the genes into classes corresponding
to positive elements of v (group 1) and
negative elements of v (group 2)
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• overall complexity is bounded above by kT2(N+

2k), using the fact that X ′X has the same

nonzero eigenvalues

• The recursive algorithm needs a stopping

rule in order to halt. We use the test statis-

tic for the significance of the largest eigen-

value given by Johnstone (2000)
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Clustering Leukemia Samples
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SCREE plot

The SCREE plot displays the eigenvalues ob-

tained from the leukemia data. The plot sug-

gests that there are four clusters.
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Adjusting our threshold to yield four clusters,

we obtain clusters consisting of

Cluster 1: 11 AML + 1 B-ALL (AML)

Cluster 2: 10 B-ALL (B-ALL)

Cluster 3: 7 B-ALL (B-ALL)

Cluster 4: 8 T-ALL + 1 B-ALL (T-ALL)

• we share the conjecture of Golub et al.

(1999) that there may be an undiscovered

subtype of B-ALL

• The three-cluster solution combines the two

B-ALL classes into a single cluster
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Predictive Gene Clusters

We can constrct gene clusters for which the

mean expression is predictive of outcome.

• more meaningful clusters

• useful for diagnosis

note that the regression coefficient vector b =√
nn1

n
n2
n (ḡ1 − ḡ2)

We take b′(y − ȳ1) as our criterion for predic-

tion when partitioning the genes

• difference in expression due to group mem-

bership varies according to y
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To obtain predictive clusters we add a term to

the objective function, giving

v′XX ′v + γb′(y − ȳ1)

• γ controls the degree of supervision of the

clustering by the prediction criterion

the maximizing vector v is calculated from the

last half of the eigenvector corresponding to

the largest eigenvalue of the matrix
[

X ′X I

(γ
2)

2X ′ss′X X ′X

]

where s = X(y − ȳ1)



Predicting Leukemia Classification

We obtained two 11-cluster solutions

• supervised by ALL/AML classification

• without supervision.

• The level of supervision was set to weight
prediction by a factor of 2

For both the supervised and unsupervised case,
we fit regressions

• outcome is ALL/AML

• 11 cluster means are predictors

• applied the same equation to a test data
set of 20 ALL and 14 AML samples
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Predicting Leukemia Classification
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supervision improves the separation of the two
sets of predicted values

• perfect separation
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Determining the Number of Clusters

we consider the analysis of an idealized cluster

structure yielding a covariance matrix

S = σ2




R(11) 0 0 · · · 0

0 R(22) 0 · · · 0
:
:

:
:

:
: · · · :

:
0 0 · · · R(m−1,m−1) 0

0 0 · · · 0 R(mm)




,

R(jj) =




1 ρ ρ · · · ρ
ρ 1 ρ · · · ρ
:
:

:
:

:
: · · · :

:
ρ ρ · · · 1 ρ
ρ ρ · · · ρ 1
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Eigenvalues and the Number of Clusters

P projects onto subspace ⊥ 1

for m clusters of equal size, PSP has:

• one zero eigenvalue

• N − m eigenvalues σ2(1 − ρ) ”small”

• m−1 eigenvalues σ2(1+ρ(N/m−1)) ”large”

For unequal but similarly sized clusters, these

results should apply approximately, since the

eigenvalues vary in a continuous fashion
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Leukemia Data Revisited
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SCREE plot

Figure 1. The SCREE plot displays the eigen-

values obtained from the leukemia data. The

plot suggests that there are five clusters.

21



The Null Case

3000×30 matrix of i.i.d. N(0, 1) random vari-

ables

Scree Plot 
 cluspect(datamatrix = as.data.frame(rmvnorm(3000, cov = diag(30))))
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Figure 1. The SCREE plot for a random ma-

trix. The plot suggests that there is one clus-

ter.
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According to our results, five clusters exist in

the data, since there are four “larger” eigen-

values

Adjusting our threshold to yield five clusters,

we obtain

Cluster 1: 11 AML + 1 B-ALL (AML)

Cluster 2: 10 B-ALL (B-ALL)

Cluster 3: 7 B-ALL (B-ALL)

Cluster 4: 8 T-ALL (T-ALL)

Cluster 5: 1 B-ALL
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• The four-cluster solution combined Cluster

5 with Cluster 4, so Cluster 5 appears to be

an atypical B-ALL which can be confused

with T-ALL

• The six-cluster solution splits up Cluster 1,

the AML’s


