Lessons in Tumour Classification using Gene Expression Microarrays

Shelley Bull

Samuel Lunenfeld Research Institute
University of Toronto

Co-authors: Sarah Colby, Wenqing He, Pingzhao Hu, Xiang Sun

The First Canadian Workshop on Statistical Genomics, National Program in Complex Data Structures Fields Institute, 4 September 2003

Outline

- Background and Study Design
- Primary Analyses of Human Tumour Studies
 - Methods, Results
- Further Comparisons of Methods
- Lessons Learned and On-going Work

- Background and Study Design
- Primary Analyses of Human Tumour Studies
 - Methods, Results
- Further Comparisons of Methods
- Lessons Learned and On-going Work

Node-negative Breast Cancer

Molecular factors for disease prognosis and targetted therapy

Cohort of 1500 (1987-1998), 870 specimens

I. Confirmatory studies

Sequential evaluation of molecular genetic factors: *her/neu-erbB2* amplification, *p53*, *p27*

II. Exploratory studies

Application of microarray technology to identify patterns of expression predictive of disease course

Musculo-Skeletal Neoplasia

Molecular factors for metastatic disease and targetted therapy

Canadian Sarcoma Group and pediatric Hospital for Sick Children tumour banks

Multiple tumour types - MFH sarcoma, osteosarcoma, ...

I. Confirmatory

Multidrug resistance (MDR1), p53

II. Exploratory

Molecular classification

Design Features

Observational Studies: Human tissue specimens

Aims: Class comparison – differential expression

Class prediction – classifying new samples

Gene co-expression – novel gene classes

Levels of Replication:

Biological * Generalize to a population, Increase precision Between Individuals within a Group

Technical * Reduce measurement error, systematic effects
Repeated Arrays within Individuals - dye-swaps
Repeated Measures Within Arrays - duplicate spots

Microarray Features

Microarrays: 19k cDNA spot arrays

Duplicate spots, side by side

Tumour and control samples cy3/cy5 dye labelled

Common reference control – mixture of cancer cell lines

Indirect design: $log(T_1/C) - log(T_2/C)$

Pre-Processing:

Local background subtraction

Log base 2 ratio of tumour to control

Subarray based median location adjustment and IQR scaling

Imputation of missing data

- Background and Study Design
- Primary Analyses of Human Tumour Studies
 - Methods
- Further Comparisons of Methods
- Lessons and On-going Work

Each array: quality, intensity, normalization - diagnostic plots

Select array sets

Analytic Strategy

Global expression

Approaches to Ensure Validity:

Internal

- Replication, Reproducibility studies, Diagnostic plots
- Statistical
 - Permutation for multiple testing
 - Cross-validation/bootstrap for prediction
 - Bootstrap for cluster reliability assessment
 - Assess validity & power by statistical experimentation

- Molecular

• Confirmation by PCR, immunohistochemistry

External

Confirmation in independent samples

Supervised Analysis - Comparison of two groups of tumours

- Single gene differential expression
 - permutation p-values, false discovery rates
- Multiple gene tumour classification
 - "honest" tumour class prediction using CV
- Clustering of selected genes
- Refinement of multigene classification
 - dimension reduction

Classification Methods

- Linear discriminant analysis (LDA)
 - Covariance matrix for genes has too many parameters
- Diagonal linear discriminant (DLDA)
 - Assumes that genes are uncorrelated
- Compound covariate predictor (CCP)
 - Weighted linear combination of mean differences
- Nearest centroid (NC)
- Nearest neighbour (1-NN, 3-NN)
- Support vector machine (SVM)

Cross-validation Methods

- Prediction accuracy of class membership of tumours used to develop a classifier will be overoptimistic, ie. Misclassification error will be too small compared to an independent sample
- CV Modification of the idea of having a training sample to construct a classifier and an independent test sample to assess it
- Algorithm: Divide dataset into k disjoint subsets
 - In training set of k-1 subsets: select genes, build classifier
 - In k^{th} test set: apply classifier, compare to known class
 - Repeat for each of k subsets
 - Estimate overall classification accuracy/error in test sets

- Background and Study Design
- Primary Analyses of Human Tumour Studies
 - Node-negative Breast Cancer
- Further Comparisons of Methods
- Lessons and On-going Work

ANN Breast Cancer - Global Gene Expression

Dataset Assembly

- -103 patient tumours, 30 with = 2 replicates
- total of 143 arrays
- 12,851 genes
- clinical data: patient outcome, pathological and molecular tumour characteristics

Purpose of the Analysis

- Differential expression between tumour groups
- "Short" list of genes for molecular validation
- Classification accuracy for statistical validation

Supervised Analysis - Two Group Comparisons: With versus without lymphatic invasion (n=37/66)

- Single gene differential expression
 - by multiple t-tests (BRB Tools, SAM)
- Number of genes selected (BRB Tools)

$$- p < 0.01$$
 4,774
 $- p < 10^{-5}$ 1,146
 $- p < 10^{-6}$ 615
 $- p < 10^{-8}$ 139

- False discovery rate (SAM)
 - median FDR is 3/2,576 (0.11%) and the 90th
 percentile is 12/2,576 (0.45%)

Clustering of 139 genes and 103 tumours

Tumours

Genes

Supervised Analysis - Two Group Comparisons: With versus without lymphatic invasion (n=37/66)

- Multiple gene tumour classification
 - -139 genes selected with p < 10^{-8}
- Apparent accuracy of < 90%
- Cross-validation: leave-one-out with selection
- Methods (BRB Tools)

	•	1.	0.107
compound	COVATIATA	nradictor	81%
— COmbound	loovallate	DICUICUI .	$\mathbf{O} \mathbf{I} 70$
			<u> </u>

- diagonal linear discriminant analysis 82%
- 3-nearest neighbour, nearest centroid 85%, 79%
- support vector machine80%

- Background and Study Design
- Primary Analyses of Two Human Tumour Studies
 - MFH Soft-tissue Sarcoma
- Further Comparisons of Methods
- Lessons and On-going Work

Sarcoma - Global Gene Expression

Dataset Assembly

- 47 MFH patients (malignant fibrous histiocytoma)
- 45 of 47 tumours with 2 dye-swap replicates
- total of 92 arrays
- 19,200 genes
- clinical characteristics: presence of metastases,
 stage (size, depth, grade)

Purpose of the analysis

- Differential expression between tumour groups
- "Short" list of genes for molecular validation
- Classification accuracy for outcome prediction

Supervised Analysis - Two Group Comparisons With versus without metastasis (n=24/23)

- Single gene discrimination
 - by multiple t-tests (BRB Tools, SAM)
- Number of genes selected (BRB Tools)

-p < 0.01	196
-p < 0.005	99
-p < 0.001	18
$-p < 5 * 10^{-4}$	6

- False discovery rate (SAM)
 - median false discovery rate is 102/274 (37%) and the 90th percentile is 135/274 (49%)

Supervised Analysis - Two Group Comparisons: With versus without metastasis (n=24/23)

- Multiple gene tumour classification
 - -99 genes selected with p < 0.005
 - Apparent accuracy of 98%
- Cross-validation: leave-one-out with selection
- Methods (BRB Tools)

compound	covariate	predictor	68%
o o ilip o orlio	O O TOOL LOUGH		0070

- diagonal linear discriminant analysis 68%
- 3-nearest neighbour, nearest centroid 58%, 64%
- support vector machine68%

- Background and Study Design
- Primary Analyses of Human Tumour Studies
 - Methods, Results to date
- Further Comparisons of Methods
- Lessons and On-going Work

Issues re Tumour Classification Methods

- Bias vs variance trade-off in leave-one-out CV versus 10-fold CV or .632+ bootstrap
- Information in the discriminant score
 - ie. prob of group membership
 - use of ROC curve (sensitivity, specificity)
- Gene selection is *univariate*, not multivariate
 - how many genes needed for accurate classification
 - can correlation among genes be used to improve classification accuracy or reduce variability

Fig. 1a & 1b | Error rates of the 3 nearest-neighbour predictor (Fig. 1a) and the compound covariate predictor (Fig. 1b) based on the sarcoma dataset.

Fig. 2a & 2b | Error rates of the 3 nearest-neighbour predictor (Fig. 2a) and the compound covariate predictor (Fig. 2b) based on the sarcoma dataset.

Fig. 3a & 3b | Error rates of the 3 nearest-neighbour predictor (Fig. 3a) and the compound covariate predictor (Fig. 3b) based on the sarcoma dataset.

Issues re Tumour Classification Methods

- Bias vs variance trade-off in leave-one-out CV versus 10-fold CV or .632+ bootstrap
- Information in the discriminant score
 - ie. prob of group membership
 - use of ROC curve (sensitivity, specificity)
- Gene selection is *univariate*, not multivariate
 - how many genes needed for accurate classification
 - can correlation among genes be used to improve classification accuracy or reduce variability

Alternative Classification Method

- Block diagonal linear discriminant analysis (BLDA)
 - Assumes an exchangeable correlation structure within gene clusters, zero correlation between clusters
 - Use of SVD for matrix inversion shows that this serves as a form of within cluster averaging

• Two-step algorithm:

- (1) select genes one-at-a-time using univariate methods and statistical criteria
- (2) option 1: cluster selected genes
- option 2: treat selected genes as the "seeds" of a cluster, include additional genes that are highly correlated with the selected gene

ROC curves - 10-fold CV

- Background and Study Design
- Primary Analyses of Two Human Tumour Studies
 - Methods, Results to date
- Further Comparisons of Methods
- Lessons Learned and On-going Work

Lessons Learned

- Computational and data handling issues should not be underestimated
- Existing microarray specific tools (BRB, SAM, R) are a great asset in getting started
- Overfitting, even with simple methods, needs to be properly addressed, especially with small sample sizes
- Different methods tend to misclassify the same observations in leave-one-out CV
- Leave-one-out and 10-fold CV more variable
- Some prediction problems are more difficult patient outcomes vs tumour characteristics, heterogeneous disease

On-going Work

- Cross-validation techniques
 - characterization of tumours that are "difficult" to classify, use of covariate data
- Use of gene clustering in classification
- Criteria to assess normalization methods and filter genes - sensitivity analyses
- Comparison of multi-gene classification and clustering methods
 - Construction of artificial datasets for statistical experiments, based on own data

Acknowledgements

Collaborators

Irene Andrulis Jay Wunder

Jim Woodgett Nalan Gokgoz

Lucine Collins Sasha Eskandarian

Software

BRB Array Tools - R Simon, NCI

SAM - R Tibshirani, Stanford

R/Bioconductor

Funding

National Cancer Institute of Canada,

Terry Fox Program Project

CIHR - IHRT in Musculo-Skeletal Neoplasia

NCE - MITACS