Optimizing the Terminal Wealth under Partial Information: The Drift Process as a Continuous Time Markov Chain *

J. Sass, U. Haussmann † www.math.ubc.ca/~uhaus/prep.html

November 21, 2003

^{*}This work was supported by NSERC under NCE grant 30354 and research grant 88051.

 $^{^\}dagger$ Department of Mathematics, University of British Columbia, 1984 Mathematics Rd, Vancouver BC, V6T 1Z2, Canada. Email: uhaus@math.ubc.ca, joern.sass@oeaw.ac.at.

MODEL:

On
$$(\Omega, \mathcal{F}, P)$$

$$dS_t^0 = S_t^0 r_t dt, \quad S_0^0 = 1, \ i = 1, \dots, n,$$

$$dS_t^i = S_t^i (\mu_t^i dt + \sum_{j=1}^n \sigma^{ij} dW_t^j), \quad S_0^i = S_0^i,$$

 $\$\pi_t^i$ invested in stock i at time t,

 $\$X_t^{\pi}$ - total wealth at time t.

Solve

$$\max_{\pi} E U(X_T^{\pi})$$

U is a utility function,

r is S adapted, bounded,

 σ is non-singular, constant or \cdots

μ , W unknown, π must be S adapted

i.e. π must be adapted to the filtration $\{\mathcal{F}_t^S\}$,

N.b. \mathcal{F}_t^S is the information contained in S up to time t.

Lakner: μ is Gaussian, i.e. $d\mu = \alpha(\delta - \mu)dt + \gamma d\hat{W}$.

New: state of economy is $Y_t \in \{e^1, e^2, \dots, e^d\}$ in \mathbb{R}^d Y is a Markov Chain with rate matrix Q:

$$Q_{kl} = \lim_{t \searrow 0} \frac{1}{t} P(Y_t = e_l \mid Y_0 = e_k), \ k, l = 1 \dots, d, \ k \neq l$$

and $\lambda_k = -Q_{kk} = \sum_{l=1, l \neq k}^d Q_{kl}$ the rate of leaving e_k .

$$\mu_t = BY_t$$

B constant for now.

N.b.

The ith column of B gives μ when the economy is in state i.

If d=2 i.e. good economy or bad economy, then

$$Q = \begin{pmatrix} -\lambda_1 & \lambda_1 \\ \lambda_2 & -\lambda_2 \end{pmatrix}.$$

Literature

portfolio optimization under partial obs'n

Karatzas and Xue, 1991 - project onto a completely obs. prob.

Lakner, 1995 - basic existence result using filtering, r=0

Lakner, 1998 - π for μ linear Gaussian dynamics, r const.

Zohar, G., 2001 - more explicit calculations for previous model

Pham, H., Quenez, M.-C., 2001 - S-identifiable stoch vol.,

linear Gaussian dynamics

HMM filters and parameter estimation

Elliott and Rishel, 1994 - estimate μ , n=1

James, M. R., Krishnamurthy, V., Le Gland, F., 1996 - robust filters

Krishnamurthy, V., Elliott, R., 2002 - robust filters

Filtering

Return on ith stock

$$dR_t^i = \frac{dS_t^i}{S_t^i}, \qquad dR_t = \mu_t \, dt + \sigma \, dW_t$$

Excess return:

$$\tilde{R}_t = R_t - \int_0^t r_s \mathbf{1}_n \, ds = \int_0^t \sigma \, d\tilde{W}_s.$$

$$\tilde{W}_t = W_t + \int_0^t \Theta_s \, ds, \text{ a } \tilde{P} \text{ Brownian motion,}$$

 \tilde{P} is the equivalent martingale measure with density $\frac{d\tilde{P}}{dP} = Z_T$, and market price of risk: $\Theta_s = \sigma^{-1}\tilde{B}_sY_s$, $\tilde{B}_t = B - r_t \mathbf{1}_{n \times d}$.

HMM filtering (Hidden Markov Model)

$$\eta_t = \mathrm{E}[Y_t \mid \mathcal{F}_t^S], \quad \zeta_t = \mathrm{E}[Z_T \mid \mathcal{F}_t^S], \quad \mathcal{E}_t = \tilde{\mathrm{E}}[Z_T^{-1}Y_t \mid \mathcal{F}_t^S].$$

$$\mathcal{E}_t = \zeta_t^{-1} \eta_t, \quad \sum_{i=1}^d \eta_t^i = 1, \quad \sum_{i=1}^d \mathcal{E}_t^i = \zeta_t^{-1}$$

$$\mathcal{E}_t = \mathrm{E}[Y_0] + \int_0^t Q^{\mathsf{T}} \mathcal{E}_s \, ds + \int_0^t \mathrm{Diag}(\mathcal{E}_s) \tilde{B}_s^{\mathsf{T}} (\sigma \sigma^{\mathsf{T}})^{-1} \, d\tilde{R}_s$$

Optimal Trading Strategies

Assumption

$$dr_t = \nu(t, r_t, \mathcal{E}_t) dt + \varrho(t, r_t, \mathcal{E}_t) d\tilde{R}_t,$$

where ν and ϱ are suitably smooth.

N.b. Interest rate models (e.g. Vasicek, Heath-Jarrow-Morton) are stated w.r.t. \tilde{P} .

Set
$$\beta_t = (S_t^0)^{-1}$$
, $\tilde{\zeta}_t = \beta_t \zeta_t$,

and $\psi(y)$, $\phi(y)$ are given in terms of $(U')^{-1}$.

Theorem Under some technical assumptions the optimal trading strategy is

$$\hat{\pi}_{t} = \frac{\beta_{t}^{-1}}{\hat{y}} (\sigma \sigma^{\top})^{-1} \left\{ \tilde{B} \mathcal{E}_{t} \tilde{\mathbb{E}}[\psi(\hat{y} \tilde{\zeta}_{T}) \mid \mathcal{F}_{t}^{S}] \right.$$

$$+ \tilde{\mathbb{E}}[\psi(\hat{y} \tilde{\zeta}_{T}) \int_{t}^{T} ((\sigma D_{t} \mathcal{E}_{s}) \tilde{B}^{\top} - (\sigma D_{t} r_{s}) \zeta_{s}^{-1} \mathbf{1}_{n}^{\top}) (\sigma \sigma^{\top})^{-1} d\tilde{R}_{s} \mid \mathcal{F}_{t}^{S}]$$

$$+ \tilde{\mathbb{E}}[\hat{y} \varphi(\hat{y} \tilde{\zeta}_{T}) \beta_{T} \int_{t}^{T} (\sigma D_{t} r_{s}) ds \mid \mathcal{F}_{t}^{S}] \right\}.$$

 \hat{y} is Lagrange multiplier (budget equation), D_t is Malliavin derivative.

mean-variance hedge + hedge for fluctuations in market price of risk, Θ , + hedge for other fluctuations in interest rates.

Log and Power Utility

Corollary

and $\mathcal{E}_{t,s} = \mathcal{E}_s/\zeta_t^{-1}$.

For logarithmic utility U(x) = log(x),

$$\hat{\pi}_t = (\sigma \sigma^{\top})^{-1} \tilde{B}_t \eta_t \hat{X}_t.$$

and for power utility $U(x) = \frac{x^{\alpha}}{\alpha}$, $\alpha < 1$, $\alpha \neq 0$,

$$\begin{split} \hat{\pi}_{t} &= \frac{\hat{X}_{t}(\sigma\sigma^{\top})^{-1}}{(1-\alpha)\tilde{\mathbf{E}}[\beta_{t,T}\tilde{\zeta}_{t,T}^{\frac{1}{\alpha-1}} \mid r_{t}, \mathcal{E}_{t}]} \{\tilde{B}_{t}\eta_{t}\tilde{\mathbf{E}}[\tilde{\zeta}_{t,T}^{\frac{\alpha}{\alpha-1}} \mid r_{t}, \mathcal{E}_{t}] \\ &+ \tilde{\mathbf{E}}[\tilde{\zeta}_{t,T}^{\frac{\alpha}{\alpha-1}} \int_{t}^{T} ((\sigma D_{t}\mathcal{E}_{t,s})\tilde{B}_{s}^{\top} - (\sigma D_{t}r_{s})\zeta_{t,s}^{-1}\mathbf{1}_{n}^{\top})(\sigma\sigma^{\top})^{-1}d\tilde{R}_{s} \mid r_{t}, \mathcal{E}_{t}] \\ &+ \alpha\,\tilde{\mathbf{E}}[\beta_{t,T} \int_{t}^{T} (\sigma D_{t}r_{s})\,ds \mid r_{t}, \mathcal{E}_{t}] \}, \end{split}$$
where $\beta_{t,T} = \beta_{T}/\beta_{t}, \,\, \tilde{\zeta}_{t,T} = \tilde{\zeta}_{T}/\tilde{\zeta}_{t}, \,\, \zeta_{t,s}^{-1} = \zeta_{s}^{-1}/\zeta_{t}^{-1} \end{split}$

Parameter Estimation - $\sigma\sigma^{\top}$

 $\sigma \sigma^{\top} = [R]_t/t = \lim_{h \to 0} \sum (\Delta_h R)(\Delta_h R)^{\top}$, but h = 1 day. Instead

$$\frac{1}{h} \operatorname{E}[R_h R_h^{\mathsf{T}}] = \sigma \sigma^{\mathsf{T}} + \frac{1}{h} E[\int_0^h \mu_t \, dt \int_0^h \mu_s^{\mathsf{T}} \, ds]$$
$$\approx \sigma \sigma^{\mathsf{T}} + c_1 h + c_2 h^2 + \dots$$

Y stationary so left side is

$$\frac{1}{h} \mathbb{E}[R_h R_h^{\mathsf{T}}] \approx \frac{1}{T} \sum_{k=1}^{T/h} (R_{kh} - R_{(k-1)h}) (R_{kh} - R_{(k-1)h})^{\mathsf{T}}$$

Algorithm for $\sigma \sigma^{\top}$

- (1) Estimate $\frac{1}{h}E[R_hR_h^{\mathsf{T}}], h = \Delta t, 2\Delta t \dots, m\Delta t.$
- (2) Find the least square quadratic fit to

$$(h, \frac{1}{h}E[R_hR_h^{\mathsf{T}}])_{h=\Delta t,\dots,m\,\Delta t}$$

(3) Choose the y-intercepts of the regression curves as estimate for $\sigma\sigma^{\top}$.

Parameter Estimation - B,Q

Knowing $\sigma \sigma^{\top}$ we use the EM algorithm to estimate B and Q. A sequential procedure for maximizing a Likelihood function. Requires unnormalized filters of the form

$$\mathcal{E}_t(X) = \tilde{\mathbf{E}}[Z_t^{-1}X_t \mid \mathcal{F}_t^S]$$

for various X, eg occupation times $O^k = \int_0^T Y_s^k ds$. These are found as solutions to simple linear SDE's driven by \tilde{R} and then reformulated as robust filters:

 Φ_t is a stochastic fundamental matrix, depends on \tilde{B} ,

$$\bar{\mathcal{E}}_t = \Phi_t^{-1} \mathcal{E}_t,$$

Need

$$d\bar{\mathcal{E}}_{t} = \Phi_{t}^{-1}Q^{\mathsf{T}}\Phi_{t}\bar{\mathcal{E}}_{t}dt, \qquad \bar{\mathcal{E}}_{0} = E(Y_{0}),$$

$$d\bar{\mathcal{E}}_{t}(O^{k}Y) = (\Phi_{t}^{-1}Q^{\mathsf{T}}\Phi_{t}\bar{\mathcal{E}}_{t}(O^{k}Y) + \bar{\mathcal{E}}_{t}^{k}e_{k})dt,$$

$$d\bar{\mathcal{E}}_{t}(\tilde{O}^{k}Y) = (\Phi_{t}^{-1}Q^{\mathsf{T}}\Phi_{t}\bar{\mathcal{E}}_{t}(\tilde{O}^{k}Y) + r_{t}\bar{\mathcal{E}}_{t}^{k}e_{k})dt,$$

$$d\bar{\mathcal{E}}_{t}(N^{kl}Y) = (\Phi_{t}^{-1}Q^{\mathsf{T}}\Phi_{t}\bar{\mathcal{E}}_{t}(N^{kl}Y) + (\Phi_{t}^{-1}Q^{\mathsf{T}}\Phi_{t})_{lk}\bar{\mathcal{E}}_{t}^{k}e_{l})dt,$$

$$d\bar{\mathcal{E}}_{t}(G^{k,i}Y) = \Phi_{t}^{-1}Q^{\mathsf{T}}\Phi_{t}\bar{\mathcal{E}}_{t}(G^{k,i}Y) dt + \bar{\mathcal{E}}_{t}^{k}e_{k}((\sigma\sigma^{\mathsf{T}})^{-1}d\tilde{R}_{t})_{i}.$$
Use Euler (=Milstein) approximation to solve.

Figure 1: $\hat{\pi}/\hat{X}$ for logarithmic and power utility ($\alpha=0.5,-5$)

Simulation - no parameter identification

 $r = 0.06, n = 1 \text{ stock}, 2 \text{ states } B = (b_1, b_2), b_1 > b_2.$

	σ	b_1	b_2	λ_1	λ_2
parameters	0.20	0.80	-0.40	30	24

$$U(x) = \log(x), \qquad U(x) = x^{\alpha}/\alpha, \ \alpha = 0.5, -5.$$

50 simulations. Note the extreme long and short positions!

Simulation - one stock, parameter identification

Simulate 6 years (250 trading days each).

Use first 5 to estimate parameters.

Then optimize portfolio over last year.

Use $m = 4, \Delta t = 1/250$ (i.e. 1 day) for $\sigma \sigma^{\top}$.

Average the $5 \times 250/4$ estimates of $\sigma \sigma^{\top}$.

Initialize EM with $b_1 = \bar{\mu} + 0.5$, $b_2 = \bar{\mu} - 0.5$ where

 $\bar{\mu}$ is the average return per unit time over the 5 years.

 $\lambda_1 = 34, \ \lambda_2 = 28.$ Iterate EM 5 times!

	σ	b_1	b_2	λ_1	λ_2
true parameters	0.20	0.80	-0.40	30	24
estimated par.	0.200	0.771	-0.412	33.05	28.36
standard dev.	0.008	0.22	0.20	1.33	1.12
abs. error in %	0.01	3.58	3.04	10.2	18.2

Table 1: Estimation of parameters for 1 stock with 2 states

Simulation - one stock, optimization

Take initial wealth $x_0 = 1$.

	U(x)	$\log(x)$		$-x^{-5}/5$			
	strategy	opt	Mert	b/h	opt	Mert	b/h
est.	av. \hat{X}_T	4.60	1.37	1.16	1.32	1.09	1.16
par.	av. $U(\hat{X}_T)$	0.104	0.001	0.118	< -100	-0.165	-0.214
	med. $U(\hat{X}_T)$	0.130	0.060	0.126	-0.094	-0.142	-0.107
	opt better than		291	256		347	286
known	av. \hat{X}_T	3.36	1.25	1.16	1.22	1.09	1.16
par.	av. $U(\hat{X}_T)$	0.399	0.136	0.118	-0.121	-0.141	-0.214
	med. $U(\hat{X}_T)$	0.305	0.150	0.126	-0.091	-0.131	-0.107
	opt better than		296	288		359	292

Table 2: Wealth and utility for 1 stock with 2 states

Mert means "Merton" strategy: $\pi_t = \left(\frac{1}{1-\alpha}\right) \frac{\bar{\mu}-r}{\sigma^2} \hat{X}_t$

$$\frac{1}{N} \sum_{i=1}^{N} \Delta R_{i\Delta t} \approx E R_{\Delta t} = \bar{\mu} \Delta t, \quad \Delta t = 1.$$

b/h: buy the stock only and hold to time T

Historical prices

20 stocks, 30 years (1972 - 2001), each stock gives rise to 25 experiments lasting 6 years: years 1-6, 2-7, ... 25-30 (inclusive). (Not independent!) So 500 experiments for "one stock" each lasting 6 years identify parameters for 5 and optimize over last year. Interest rate is fed rate.

For optimization, take $D_t r_s = 0$ (investor uses constant interest rate, avg. of the previous year, but he is exposed to market rate, i.e. in \hat{X}).

Only one iteration of EM (slow PC)

The average estimated parameters were

$$\sigma \approx 0.26, \quad b_1 \approx 0.66, \quad b_2 \approx -0.37, \quad \lambda_1 = \lambda_2 \approx 125.8$$
 outliers

U(x)		$\log(x)$			$-x^{-5}/5$	
strategy	opt	Mert	b/h	opt	Mert	b/h
av. \hat{X}_T	1.509	1.134	1.149	1.129	1.096	1.149
med. \hat{X}_T	1.160	1.090	1.118	1.107	1.088	1.118
av. $U(\hat{X}_T)$	0.012	-0.030	0.110	-538.3	-0.143	-0.454
med. $U(\hat{X}_T)$	0.125	0.083	0.111	-0.121	-0.131	-0.115
aborted	11	3		0	0	
opt better than		288	258		303	243

Table 3: Wealth and utility for historical prices, 1 stock with 2 states

More historical

log utility

setting		Ι		II		III	
strategy	b/h	opt	Mert	opt	Mert	opt	Mert
av. \hat{X}_T	1.149	1.509	1.134	1.594	1.160	1.448	1.160
med. \hat{X}_T	1.118	1.160	1.090	1.154	1.093	1.134	1.093
av. $U(\hat{X}_T)$	0.124	0.012	-0.030	0.037	-0.007	0.034	-0.007
med. $U(\hat{X}_T)$	0.111	0.125	0.083	0.124	0.082	0.100	0.082
aborted		11	3	12	2	12	2
opt better than			288		289		281

Table 4: I: 2 states, const. r; II: 2 states, historical r; III: 3 states, historical r

Extensions (Stochastic volatility)

We can extend theoretical results to σ and B being S adapted processes, i.e.

 $r, \ \sigma, \ \sigma^{-1}\tilde{B} \ \text{are known smooth functions of } (t, S_t, \eta_t).$

Applied to historical prices with B constant and $\sigma_t = s_0 + s_1 \eta_t^1 + s_2(\eta_t^1)^2$, s_i to be estimated, get better results:

	opt	const σ	Merton	b/h
av. \hat{X}_T	1.745	1.603	1.163	1.153
med. \hat{X}_T	1.181	1.138	1.095	1.121
av. $\log(\hat{X}_T)$	0.122	0.057	0.006	0.116
med. $\log(\hat{X}_T)$	0.167	0.129	0.091	0.114
aborted	1	11	2	_

Table 5: 2 states, historical r, stochastic vol.

"const σ " is the strategy where σ is assumed to be constant, and is estimated as before.

Merton strategy also assumes constant σ and μ .