Early Exercise Boundary
 Analytical and Numerical Approximations

John Chadam
Department of Mathematics
University of Pittsburgh

Joint Work with:

Xinfu Chen, University of Pittsburgh

David Saunders, University of Pittsburgh
Rob Stamicar, Risk Metrics
David Lozinski, TD Bank
Jiang Lishang, Tongji University, Shanghai
Weian Zhang, University of California, Irvine
Dan Secovic, Poratislava

Supported by: NSF DMS (Chadam, Chen)

Early Exercise Boundary Analytical and Numerical Approximations

OUTLINE

1. Introduction/Background
2. Free Boundary/Green's Function Methods (the mystery revealed)
3. Analytical Approximations
4. ODE/IODE Approximation
5. Error Comparisons
6. Extensions/Generalizations
7. Introduction/Background

$$
\begin{aligned}
& p_{t}+\frac{\sigma^{2}}{2} S \frac{\partial^{2} p}{\partial S^{2}}+r S \frac{\partial p}{\partial S}-r p=0 \quad S>S_{f}(t), 0<t<T \\
& p(S, t)=E-S \\
& \left.\frac{\partial p}{\partial S}(S, t)=-1\right\} S=S_{f}(t), 0<t<T \\
& p(S, t) \rightarrow 0 \quad \text { as } \quad S \rightarrow \infty, 0<t<T \\
& p(S, T)=\max (E-S, 0), S_{f}(T)=E
\end{aligned}
$$

Difficulties

1. No analytical solution for $p(S, t), S_{f}(t)$ - Existence, uniqueness and convexity of the boundary proved (Chen, Chadam, Jiang \& Zheng, 2004).
2. $S_{f}(t) \rightarrow-\infty$ as $T \rightarrow T_{-}$(van Moerbke, 1976).

Previous Results:

Aitshlia \& Lai;

Broadie \& Detemple;

Carr, Jarrow \& Myneni;

Geske \& Johnson;

Huang, Subrahmanyan \& Yu;

Jacka, Jaillet, Lamberton \& Lapeyre;

Karatzas;

Kim;

Parkinson;

Salopek; etc.

Recent Advances:

$$
\tau=\frac{\partial^{2}}{2}(T-t), \quad k=\frac{2 r}{\partial^{2}}, S_{f}(\tau)=E e^{-2 \sqrt{\tau} \sqrt{\partial(\tau)}}
$$

Barles, Burdeau, Romano \& Samsoen (1995) - BBRS

$$
\begin{aligned}
& S_{f}(t) \sim E(1-\sigma \sqrt{T-t} \sqrt{\ln (T-t)}), \quad t \sim T \\
& (\Leftarrow \alpha(\tau)=-\ln \sqrt{c \tau}, c \text { arbitrary })
\end{aligned}
$$

Barone-Adesi \& Whaley (1987); MacMillan (1997) - BWM

$$
\sqrt{\pi} h(\tau)=\int_{\sqrt{\alpha(\tau)}}^{\infty} e^{-\left[z-\frac{(k+1)}{2} \sqrt{\tau}\right]^{2}}\left\{(1+\eta(\tau)) e^{-2 \sqrt{\alpha(\tau)} \sqrt{\tau}}-e^{-2 z \sqrt{\tau}}\right\} \alpha z
$$

with $h(\tau)=1-e^{-k \tau}, \eta(\tau)=\sqrt{h(\tau)}\left[k+\frac{(k-1)^{2}}{4} h(\tau)+\frac{(k-1)}{2} \sqrt{h(\tau)}\right]^{-1}$

Kuske \& Keller (1998) - KK

$$
\sqrt{\tau} \alpha e^{\alpha}=1 / \sqrt{9 \pi k^{2}}
$$

Bunch \& Johnson (2000) - BJ

$$
\sqrt{\alpha} e^{\alpha-(k-1) \sqrt{\tau} \sqrt{\alpha}}=\sqrt{b} e^{(b-1)(k+1)^{2 / 4}}\left(4 k^{2} \tau\right)^{-1 / 2}
$$

with $b=1-k^{2}\left[(1+k)^{2}\left(2+(1+k)^{2} \tau\right]^{-1}\right.$

Behaviour Near Expiry ($t \sim T, \tau \sim 0$):

$$
S_{f}(\tau)=E e^{-2 \sqrt{\tau} \sqrt{\alpha}}, \tau=\frac{\sigma^{2}}{2}(T-t), k=\frac{2 r}{\sigma^{2}}
$$

(BBRS) $\quad \alpha(\tau) \sim-\ln \sqrt{c \tau}, c$ arbitrary
(BWM) $\quad \sqrt{\tau} \sqrt{\alpha} e^{\alpha} \sim 1 / \sqrt{4 \pi k^{2}}$
(KK) $\quad \sqrt{\tau} \alpha e^{\alpha} \sim 1 / \sqrt{9 \pi k^{2}}$

$$
\begin{equation*}
\sqrt{\tau} \sqrt{\alpha} e^{\alpha} \sim\left[\left(1-\frac{1}{2}\left(\frac{k}{1+k}\right)^{2}\right) / 4 k^{2}\right]^{-1 / 2} \tag{BJ}
\end{equation*}
$$

Stamicar, Sevocic \& Chadam (199); Chen, Chadam \& Stamicar (2000)

- CCSS
(CCSS) $\quad \sqrt{\tau} e^{\alpha} \sim 1 / \sqrt{4 \pi k^{2}}$

$$
\Rightarrow \alpha(\tau) \sim-\ln \left(\sqrt{4 \pi k^{2} \tau}\right)=-\frac{\xi}{2}, \xi=\ln \left(4 \pi k^{2} \tau\right)
$$

$(\operatorname{BBRS}) \Leftrightarrow \quad \alpha(\tau) \sim-\frac{\xi}{2}+c, c$ unspecified
$(\mathrm{BWM}) \Rightarrow \quad \alpha(\tau) \sim-\frac{\xi}{2}-\frac{1}{2} \ln \left(-\frac{\xi}{2}\right)$
$(\mathrm{KK}) \Rightarrow \alpha(\tau) \sim-\frac{\xi}{2}+\ln \left(\frac{3}{2}\right)-\ln \left(-\frac{\xi}{2}+\ln \left(\frac{3}{2}\right)\right)$
$(\mathrm{BJ}) \Rightarrow \alpha(\tau) \sim-\frac{\xi}{2}+\ln (\kappa)-\frac{1}{2} \ln \left(-\frac{\xi}{2}+\ln (\kappa)\right)$
2. Free Boundary/Green's Function Method

$$
\begin{aligned}
& \tau=\frac{\sigma^{2}}{2}(T-t), \quad x=\ln (S / E), \quad P_{\text {new }}=P / E \\
& S(\tau)=\ln \left(s_{f} / E\right) \text { (i.e., } S(t)=-2 \sqrt{\tau} \sqrt{\alpha(\tau)} \\
& \left\{\begin{array}{l}
p_{\tau}-\left\{p_{x x}+(k-1) p_{x}-k p\right\}=k H(S(\tau)-x) \\
p(x, 0)=\max \left(1-e^{x}, 0\right) .
\end{array}\right.
\end{aligned}
$$

$$
p(x, \tau)=\int_{\infty}^{\infty} p(y, 0) \Gamma(x-y, \tau) d y+k \int_{0}^{\tau} \int^{S(u)}-\infty \Gamma(x-y, \tau-u) d y d u
$$

in terms of the fundamental solution

$$
\begin{gathered}
\Gamma(x, \tau)=e^{-k \tau} F(x+(k-1), \tau, \tau) \\
F(z, \tau)=\frac{1}{2 \sqrt{\pi \tau}} e^{-z^{2} / 4 \tau} \\
p(x, \tau)=\int_{-\infty}^{S(0)=0}\left(1-e^{y}\right) \Gamma(x-y, \tau) d y+k \int_{0}^{\tau} \int_{-\infty}^{S(u)} \Gamma(x-y, \tau-u) d y d u \\
p_{\tau}(x, \tau)=\Gamma(x, \tau)+k \int_{0}^{\tau} \Gamma(x-S(u), \tau-u) \dot{S}(u) d u . \\
p_{\tau}(S(\tau), \tau)=0 \\
\Gamma(s(\tau), \tau)=-k \int_{0}^{\tau}(S(\tau)-S(u), \tau-u) \dot{S}(u) d u . \\
\Gamma(S(\tau)-S(u), \tau-u)=F(S(\tau)-S(u), \tau-u)[1+O(\tau)], \text { small } 0<u<\tau
\end{gathered}
$$

With $\eta=(S(\tau)-S(u)) / 2 \sqrt{\tau-u}$, the rhs for small τ

$$
\begin{gathered}
\sim-k \int_{0}^{S(\tau) / 2 \sqrt{\tau}(\rightarrow-\infty)} \underbrace{\left[1-\frac{S(\tau)-S(u)}{2 \dot{S}(u)(\tau-u)}\right]^{-1}}_{-\frac{1}{2} \text { uniformly in } u} \frac{e^{-\eta^{2}} \sqrt{\pi}}{} d \eta . \\
\Rightarrow \Gamma(S(\tau), \tau) \simeq \frac{e^{-S(\tau)^{2} / 4 t}}{2 \sqrt{\pi \tau}} \sim k \\
\Rightarrow \quad S(\tau) \sim-2 \sqrt{\tau} \sqrt{-\ln \sqrt{4 \pi k^{2} t}} \\
\text { i.e., } \alpha(\tau) \sim-\frac{\ln \left(4 \pi k^{2}(\tau)\right.}{2}=-\frac{\xi}{2}, \tau \sim 0
\end{gathered}
$$

Similar approach developed independently by Goodman \& () .
3. Analytical Approximations

$$
\begin{gathered}
s_{f}(\tau)=E e^{-2 \sqrt{\tau}} \sqrt{\alpha(\tau)}=E e^{S(\tau)} \\
\Gamma(S(\tau), \tau)=-k \int_{0}^{\tau} \Gamma(S(\tau)-S(u) ; \tau-u) \dot{S}(u) d u \\
\alpha(\tau) \sim-\frac{\ln \left(4 \pi k^{2} \tau\right)}{2}=-\frac{\xi}{2}, \tau \sim 0 \\
\alpha(\tau)=-\frac{\xi}{2}-\frac{1}{\xi}+\frac{1}{2 \xi^{2}}+\frac{17}{3 \xi^{3}}-\frac{51}{4 \xi^{4}}-\frac{1148}{15 \xi^{5}}+\frac{398}{\xi^{6}}+\cdots+t<\frac{1}{4 \pi k^{2}} \\
\alpha(\tau)=-\frac{\xi}{2}-\frac{1}{\xi-a}+\frac{(1+2 a)}{2(\xi-a)^{2}}+\frac{17 / 3-a-a^{2}}{(\xi-a)^{3}}+\cdots, t<e^{a} / 4 \pi k^{2} \\
-\frac{\xi}{2}=\alpha+\ln \left[1-\frac{1 / 2}{\alpha+b}-\frac{b / 2}{(\alpha+b)^{2}}+\frac{\left(1-b^{2}\right)}{2(\alpha+b)^{3}}+\cdots\right], \alpha \rightarrow \infty
\end{gathered}
$$

bigskip Truncating at third term by taking $b=1$.

$$
\tau e^{\alpha}\left[1-\frac{1}{2(\alpha+1)}-\frac{1}{2(\alpha+1)^{2}}\right]=1 / \sqrt{4 \pi k^{2}}
$$

Can also interpolate with Merton's infinite horizon solution.
4. ODE/IODE Approximation

$$
\begin{gathered}
\dot{S}(\tau)=\frac{S(\tau)}{2 k \tau} \Gamma(S(\tau), \tau)[1=m(t)) \\
m(\tau)=k \int_{0}^{\tau}\left[\frac{S(\tau)-S(u)}{\tau-u)} \frac{2 \tau}{S(\tau)}-1\right] \frac{\Gamma(S(\tau)-S(u), t-u)}{\Gamma(S(\tau), \tau)} \dot{S}(u) d u \\
s(0)=0
\end{gathered}
$$

Actually solve an IODE $\frac{d \alpha}{d \xi}=\cdots$ subject to

$$
\alpha \rightarrow-\frac{\xi}{2} \text { as } \xi=\ln \left(4 \pi k^{2} \tau\right) \rightarrow-\infty
$$

Rigorous proof of convergence - Chen \& Chadam (2002).

