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1. Introduction

The present paper asks a basic question: how does the presence of jumps
impact our ability to estimate the diffusion parameter o27?

e | start by presenting some intuition that seems to suggest that the
identification of o2 is hampered by the presence of the jumps...




e One may wonder whether this result is driven by the fact that Poisson
jumps share the dual characteristic of being large and infrequent.

e Is it possible to perturb the Brownian noise by a Lévy pure jump

2

process other than Poisson, and still recover the parameter o< as if no

jumps were present?




e Intuitively, these tiny jumps ought to be harder to distinguish from
Brownian noise, which it is also made up of many small moves.

e Perhaps more surprisingly then, | find that maximum likelihood can still
perfectly discriminate between Brownian noise and a Cauchy process.

e Every Lévy process can be uniquely expressed as the sum of three




3. A “small jumps’ component in the form of a pure jump martingale
having only jumps of size smaller than one;

e So the two examples considered in this paper represent the prototypical
cases of:

1. Distinguishing the Brownian component from the “big jumps”
component;




e The answer is no, but they do better than traditional moments such




e Beyond the econometrics, why should one care about being able to

decompose the noise in the first place?

1. In option pricing, the two types of noise have different hedging

requirements and possibilities;

2. In portfolio allocation, the demand for assets subject to both types
of risk can be optimized further if a decomposition of the total risk




2. The Model and Setup

Most of the points made in this paper are already apparent in the simple
Merton (1976) Poisson jump-diffusion model:

dX; = pdt + ocdW + JpdN;

e X; denotes the log-return derived from an asset, W; a Brownian mo-




2.1. Moments of the Process

e Let A denote the infinitesimal generator of the process X, defined by
its action on functions f (9, x, zg) in its domain:
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of (A, x, zq) L (A, z, z0) PR f (A, z,zq)

A-F(A =
f (A, z,xg) R v 5 = 52

+ AE; [f(Aaw + J, xO) - f(Aaxax())] :




e The first four conditional moments of the process X are F[YA] =
A (p + BA) and, with

M (A,0,r) = E[(Ya — A(p+ BA))]

we have




2.2. Absolute Moments of Non-Integer Order

e The absolute value of the log returns is known to be less sensitive to

large deviations (such as jumps) than the quadratic variation.




e Consider the quadratic variation of the X process

n
. 2
[X, X]; = plimp oo > (X, — Xt,_4)
1=1

e We have




e However, Lepingle (1976) studied the behavior of the power variation
of the process, i.e., the quantity

n
. r
P [X, X1, = plimy oo > | X, — X,
1=1

and showed that the contribution of the jump part to » [ X, X], is, after

normalization, zero when r € (0, 2), Z,ﬁl J2 when 7 = 2 and infinity




e These results suggest that for purposes of inference it will be useful
to consider absolute moments of order r (i.e., the plims of the power

variations) when forming GMM moment conditions.




Proposition 1: For any » > 0, the centered absolute moment of order r is:

Ma(A,0,7) = E[[YA — A(p+ BA)']
oo 1  —aA_{nB=DBBN?

r/2

e 2(Ao%+mn) (nn+0?A)
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3. Intuition for the Difficulty in ldentifying the

Parameters

3.1. Isonoise Curves

e [ he first intuition | provide is based on the traditional method of




e Consider what can be called isonoise curves. These are combinations
of parameters of the process that result in the same observable condi-

tional variance of the log returns; excess kurtosis is also included.
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3.2. Inferring Jumps from Large Realized Returns

e In discretely sampled data, every change in the value of the variable

Is by nature a discrete jump




e To investigate that question, let's use Bayes' Rule:

Pr(Ba = 1;0)

PF(BA:1|ZAZZ;9):PF(ZA22|BA:1;9)

Pr(Za > 2;0)
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e The figure shows that as far into the tail as 4 standard deviations, it
is still more likely that a large observed log-return was produced by

Brownian noise only.




e This said, our ability to visually pick out the jumps from the sample
path increases with the sampling frequency:

W
(0]
>~
D

-

—

-

Q
(1]

Q
(0]
G
Q,

sampling interval




e But our ability to infer the provenance of the large move tails off very

quickly as we move from A equal to 1 minute to 1 hour to 1 day.




3.3. The Time-Smoothing Effect

e The final intuition for the difficulty in telling Brownian noise apart
from jumps lies in the effect of time aggregation, which in the present
case takes the form of time smoothing.

e Just like a moving average is smoother than the original series, log
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4. Disentangling the Diffusion from the Jumps
Using the Likelihood

e The time-smoothing effect suggests that our best chances of disentan-

gling the Brownian noise from the jumps lie in high frequency data.




Theorem 1: When the Brownian motion is contaminated by Poisson jumps,
it remains the case that

AVARyg (0°) = 20*A + o(A)




e Theorem 1 says that maximum-likelihood can in theory perfectly disen-
tangle o2 from the presence of the jumps, when using high frequency
data.

e T he presence of the jumps imposes no cost on our ability to estimate
o2 : the variance is 02, not the total variance o2 + (3% + n)A.

e This can be contrasted with what would happen if, say, we contami-
nated the Brownian motion with another Brownian motion with known
. In that case, we could also estimate o2, but the asymp-

variance s2




5. How Close Does GMM Come to MLE?

e | form moment functions of the type h(y,9,0) = y" — M (9,0,r)
and/or h(y,d,60) = |y|" — Mg (6,0, r) for various values of r.

e By construction, these moment functions are unbiased and all the




e To obtain tractable closed form expressions for the asymptotic vari-

ances of the different estimators, | Taylor-expand them in A around
A=0




e | find that, although it does not restore full maximum likelihood effi-
ciency, using absolute moments in GMM helps.

1. When o2 is estimated using exclusively moments M (A, 8, ), then

AVARcMM (02) = O(1), a full order of magnitude bigger than
achieved by MLE.

2. When absolute moments of the form M, (A, 0,r) with » € (0,1)
2 o .




Proposition 2: AVAR of GMM Estimators of o2

(Maen)

M, (A,0,r), r € (0,1)

6m°\ 2\ 100nAo?
MR+ A (200 + M 4 ) +o(8)

r2

Moment(s) AVARcMM (02) with jumps AVARcMM (02) no jumps
M (A,6,2) 32X + 24 (02 + A 2Ac*
2Ac*

A% (m — 1) +o(A)

)




e Efficiency of the GMM estimator of o2 using My (A, 0,7), relative to
MLE, in the absence of jumps:




e With jumps:




e Taking such absolute moments of different orders in combination such

as (Mg (A,0,7), Mg (A,6,q)) improves upon any single one:




6. Disentangling the Diffusion from Other Jump

Processes: The Cauchy Case

e The result so far has been the ability of maximum-likelihood to fully
distinguish the diffusive component from the Poisson jump component,

as shown in Theorem 1.




6.1. The Cauchy Pure Jump Process

e A process is a Lévy process if it has stationary and independent incre-
ments and is continuous in probability.

e The log-characteristic function of a Lévy process is given by the Lévy-
Khintchine formula:




e The Lévy measure v(-) describes the pure jump component: v(FE) for
any subset £ C R is the rate at which the process takes jumps of size

x € F, i.e., the number of jumps of size falling in E per unit of time.




e Is it possible to perturb the Brownian noise by a Lévy pure jump

process other than Poisson, and still recover the parameter o2 as if no
jumps were present?

e The reason one might expect this not to be possible is the fact that,
among Lévy pure jump processes, the Poisson process is the only one

with a finite v(R), i.e., a finite number of jumps in a finite time
interval.




e | will consider as an example the Cauchy process, which is the pure
jump process with Lévy measure

v(dz) = %dw

e This is an example of a symmetric stable distribution of index 0 <
o < 2 and rate £ > 0, with Lévy measure v(dz) = £ |z| % 1 da.
The Cauchy process corresponds to o = 1, while the limit a — 2




6.2. Mixing Cauchy Jumps with Brownian Noise

e So | now look at the situation where

dXt = pdt + odWy + dCy

where C} is a Cauchy process independent of the Brownian motion
We.




e So: is it still possible, using maximum likelihood, to identify o2 with
the same degree of precision as if there were no jumps?

e Theorem 2: When the Brownian motion is contaminated by Cauchy




6.3. How Small are the Small Jumps?

e Theorem 2 has shown that Cauchy jumps do not come close enough to
mimicking the behavior of the Brownian motion to reduce the accuracy
of the MLE estimator of &2.

e The intuition behind this is the following:

— While there is an infinite number of small jumps in a Cauchy pro-

(Y5 1 - -
- a - a -
< . . . .. Cl . - .. C [\ . C . . -




— In other words, they are harder to pick up from inspection of the

path than Poisson jumps are, but with a fine enough microscope,
il ible.




Formally:

e If YA is the log-return from a pure Brownian motion, then

Al/252 < g2

Pr(]Y, -~ =
r(IYal > ¢) S

) (1+0(1))

is exponentially small as A — 0.




e For example, for a symmetric stable process with order a:

(87

2
Pr([Yal >¢) = A x =+ o(A).
g




e In other words, Lévy pure jump processes will always produce moves
of size greater than £ at a rate far greater than the Brownian motion:

— Brownian motion will have all but an exponentially small fraction

of its increments of size less than any given e.




e Do jumps always have to behave that way? Yes, because the sample
paths of a Markov process are almost surely continuous iff, for every
e > 0,

Pr(|Ya| > ¢) = o(A)




7. Monte Carlo Simulations

e 5,000 simulations of the jump-diffusion, each of length n = 1,000 at
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e Small sample and asymptotic distributions for o< in the Poisson case
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e And for the Poisson jump parameter A :




2

e Small sample and asymptotic distributions for ¢ in the Cauchy case
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e And for the Cauchy jump parameter & :
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e Confidence Regions when (02, \) estimated together:
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e Confidence Regions when (02, &) estimated together:




8. Conclusions

e MLE can perfectly disentangle Brownian noise from jumps provided
one samples frequently enough.

e True for a compound Poisson process, i.e., a jump-diffusion. But also




