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1. Introduction

The present paper asks a basic question: how does the presence of jumps

impact our ability to estimate the diffusion parameter σ2?

• I start by presenting some intuition that seems to suggest that the

identification of σ2 is hampered by the presence of the jumps...

• But, surprisingly, maximum-likelihood can actually perfectly disen-

tangle Brownian noise from jumps provided one samples frequently

enough.

• I first show this result in the context of a compound Poisson process,

i.e., a jump-diffusion as in Merton (1976).



• One may wonder whether this result is driven by the fact that Poisson

jumps share the dual characteristic of being large and infrequent.

• Is it possible to perturb the Brownian noise by a Lévy pure jump

process other than Poisson, and still recover the parameter σ2 as if no

jumps were present?

• The reason one might expect this not to be possible is the fact that,

among Lévy pure jump processes, the Poisson process is the only one

with a finite number of jumps in a finite time interval.

• All other pure jump processes exhibit an infinite number of small jumps

in any finite time interval.



• Intuitively, these tiny jumps ought to be harder to distinguish from

Brownian noise, which it is also made up of many small moves.

• Perhaps more surprisingly then, I find that maximum likelihood can still

perfectly discriminate between Brownian noise and a Cauchy process.

• Every Lévy process can be uniquely expressed as the sum of three

independent canonical Lévy processes:

1. A continuous component: Brownian motion (with drift);

2. A “big jumps” component in the form of a compound Poisson

process having only jumps of size greater than one;



3. A “small jumps” component in the form of a pure jump martingale

having only jumps of size smaller than one;

• So the two examples considered in this paper represent the prototypical

cases of:

1. Distinguishing the Brownian component from the “big jumps”

component;

2. Distinguishing the Brownian component from an example of the

class of “small jumps” components.

• I also look at the extent to which GMM estimators using absolute

moments of various non-integer orders can recover the efficiency of

maximum-likelihood



• The answer is no, but they do better than traditional moments such

as the variance and kurtosis.



• Beyond the econometrics, why should one care about being able to

decompose the noise in the first place?

1. In option pricing, the two types of noise have different hedging

requirements and possibilities;

2. In portfolio allocation, the demand for assets subject to both types

of risk can be optimized further if a decomposition of the total risk

into a Brownian and a jump part is available;

3. In risk management, such a decomposition makes it possible over

short horizons to manage the Brownian risk using Gaussian tools

while assessing VaR and other tail statistics based on the identified

jump component.



2. The Model and Setup

Most of the points made in this paper are already apparent in the simple

Merton (1976) Poisson jump-diffusion model:

dXt = µdt+ σdWt + JtdNt

• Xt denotes the log-return derived from an asset, Wt a Brownian mo-

tion and Nt a Poisson process with arrival rate λ.

• The log-jump size Jt is N(β, η).

• The density exhibits skewness (if the jumps are asymmetric) and excess

kurtosis



2.1. Moments of the Process

• Let A denote the infinitesimal generator of the process X, defined by

its action on functions f (δ, x, x0) in its domain:

A · f (∆, x, x0) =
∂f (∆, x, x0)

∂∆
+ µ

∂f (∆, x, x0)

∂x
+

1

2
σ2∂

2f (∆, x, x0)

∂x2

+ λEJ [f(∆, x+ J, x0)− f(∆, x, x0)] .

• To evaluate a conditional expectation, I use the Taylor expansion

E [f(∆, X∆, X0)|X0 = x0] =
K∑
k=0

∆k

k!
Ak · f(δ, x, x0)|x=x0,δ=0

+O
(
∆K+1

)



• The first four conditional moments of the process X are E [Y∆] =

∆ (µ+ βλ) and, with

M (∆, θ, r) ≡ E [(Y∆ −∆(µ+ βλ))r]

we have

M (∆, θ, 2) = ∆
(
σ2 + (β2 + η)λ

)
M (∆, θ, 3) = ∆λβ

(
β2 + 3η

)
M (∆, θ, 4) = ∆

(
β4λ+ 6β2ηλ+ 3η2λ

)
+ 3∆2

(
σ2 + (β2 + η)λ

)2



2.2. Absolute Moments of Non-Integer Order

• The absolute value of the log returns is known to be less sensitive to

large deviations (such as jumps) than the quadratic variation.

• This has been noted by Ding, Granger and Engle (1993) and others.



• Consider the quadratic variation of the X process

[X,X]t = plimn→∞
n∑
i=1

(
Xti −Xti−1

)2

• We have

[X,X]t = [X,X]ct +
∑

0≤s≤t
(Xs −Xs−)2

= σ2t+
Nt∑
i=1

J2
si

• Not surprisingly, the quadratic variation no longer estimates σ2.



• However, Lepingle (1976) studied the behavior of the power variation

of the process, i.e., the quantity

r [X,X]t = plimn→∞
n∑
i=1

∣∣∣Xti −Xti−1

∣∣∣r
and showed that the contribution of the jump part to r [X,X]t is, after

normalization, zero when r ∈ (0, 2),
∑Nt
i=1 J

2
si

when r = 2 and infinity

when r > 2.

• Barndorff-Nielsen and Shephard (2003) use this result to show that the

full r [X,X]t depends only on the diffusive component when r ∈ (0, 2).



• These results suggest that for purposes of inference it will be useful

to consider absolute moments of order r (i.e., the plims of the power

variations) when forming GMM moment conditions.

• The following result gives an exact expression for these moments.



Proposition 1: For any r ≥ 0, the centered absolute moment of order r is:

Ma (∆, θ, r) ≡ E [|Y∆ −∆(µ+ βλ)|r]

=
∞∑
n=0

1

π1/2n!
e
−λ∆− (nβ−∆βλ)2

2(∆σ2+nη)
(
nη + σ2∆

)r/2
(λ∆)n

× 2r/2Γ
(
1 + r

2

)
F

1 + r

2
,
1

2
,
β2(n−∆λ)2

2
(
nη + σ2∆

)


where Γ denote the gamma function and F denotes the Kummer confluent

hypergeometric function 1F1(a, b, ω).

In particular, when β = 0, F
(
1+r
2 , 12, 0

)
= 1.



3. Intuition for the Difficulty in Identifying the

Parameters

3.1. Isonoise Curves

• The first intuition I provide is based on the traditional method of

moments, combined with non-linear least squares.

• In NLLS, the asymptotic variance of the estimator is proportional to

the inverse of the partial derivative of the moment function (or con-

ditional mean) with respect to the parameter.



• Consider what can be called isonoise curves. These are combinations

of parameters of the process that result in the same observable condi-

tional variance of the log returns; excess kurtosis is also included.

• Intuitively, any two combinations of parameters on the same isonoise

curve cannot be distinguished by the method of moments using these

moments.
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3.2. Inferring Jumps from Large Realized Returns

• In discretely sampled data, every change in the value of the variable

is by nature a discrete jump

• Given that we observe in discrete data a change in the asset return

of a given magnitude z or larger, what does that tell us about the

likelihood that such a change involved a jump (as opposed to just a

large realization of the Brownian noise)?



• To investigate that question, let’s use Bayes’ Rule:

Pr (B∆ = 1 |Z∆ ≥ z; θ) = Pr (Z∆ ≥ z |B∆ = 1; θ)
Pr (B∆ = 1; θ)

Pr (Z∆ ≥ z; θ)

=

e−λ∆λ∆

(
1− Φ

(
z−µ∆−β

2(η+∆σ2)1/2

))
∑+∞
n=0

e−λ∆(λ∆)n

n!

(
1− Φ

(
z−µ∆−nβ

2(nη+∆σ2)1/2

))
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• The figure shows that as far into the tail as 4 standard deviations, it

is still more likely that a large observed log-return was produced by

Brownian noise only.

• Since these moves are unlikely to begin with (and hence few of them

will be observed in any given series of finite length), this underscores

the difficulty of relying on large observed returns as a means of iden-

tifying jumps.



• This said, our ability to visually pick out the jumps from the sample

path increases with the sampling frequency:
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• But our ability to infer the provenance of the large move tails off very

quickly as we move from ∆ equal to 1 minute to 1 hour to 1 day.

• At some point, enough time has elapsed that the 10% move could

very well have come from the sum over the time interval (0,∆) of all

the tiny Brownian motion moves.



3.3. The Time-Smoothing Effect

• The final intuition for the difficulty in telling Brownian noise apart

from jumps lies in the effect of time aggregation, which in the present

case takes the form of time smoothing.

• Just like a moving average is smoother than the original series, log

returns observed over longer time periods are smoother than those

observed over shorter horizons. In particular, jumps get averaged out.

• This effect can be severe enough to make jumps visually disappear

from the observed time series of log returns.
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4. Disentangling the Diffusion from the Jumps

Using the Likelihood

• The time-smoothing effect suggests that our best chances of disentan-

gling the Brownian noise from the jumps lie in high frequency data.

• I will show that, in an idealized environment where our ability to sample

at high frequency is unaffected by such things as market microstructure

noise, it is actually possible to recover the value of σ2 with the same

degree of precision as if only source of noise were the Brownian motion.



Theorem 1: When the Brownian motion is contaminated by Poisson jumps,

it remains the case that

AVARMLE

(
σ2
)

= 2σ4∆ + o(∆)

so that in the limit where sampling occurs infinitely often (∆ → 0), the

MLE estimator of σ2 has the same asymptotic distribution as if no jumps

were present.



• Theorem 1 says that maximum-likelihood can in theory perfectly disen-
tangle σ2 from the presence of the jumps, when using high frequency
data.

• The presence of the jumps imposes no cost on our ability to estimate
σ2 : the variance is σ2, not the total variance σ2 + (β2 + η)λ.

• This can be contrasted with what would happen if, say, we contami-
nated the Brownian motion with another Brownian motion with known
variance s2. In that case, we could also estimate σ2, but the asymp-

totic variance of the MLE would be 2
(
σ2 + s2

)2
∆.

• In light of the Cramer Rao lower bound, Theorem 1 establishes 2σ4∆
as the benchmark for alternative methods (based on the quadratic
variation, absolute variation, GMM, etc.)



5. How Close Does GMM Come to MLE?

• I form moment functions of the type h(y, δ, θ) = yr − M (δ, θ, r)

and/or h(y, δ, θ) = |y|r −Ma (δ, θ, r) for various values of r.

• By construction, these moment functions are unbiased and all the

GMM estimators considered will be consistent.

• The question becomes one of comparing their asymptotic variances

among themselves, and to that of MLE.



• To obtain tractable closed form expressions for the asymptotic vari-

ances of the different estimators, I Taylor-expand them in ∆ around

∆ = 0

• See Äıt-Sahalia and Mykland (2003) for a different use of this tech-

nique).



• I find that, although it does not restore full maximum likelihood effi-

ciency, using absolute moments in GMM helps.

1. When σ2 is estimated using exclusively moments M (∆, θ, r), then

AVARGMM

(
σ2
)

= O(1), a full order of magnitude bigger than

achieved by MLE.

2. When absolute moments of the form Ma (∆, θ, r) with r ∈ (0, 1)

are used, however, AVARGMM

(
σ2
)

= O(∆), i.e., the same order

as MLE, although the constant of proportionality is always greater

than 2σ4 as should be the case by Cramer-Rao.

3. When σ2 is estimated based on the moment Ma (∆, θ, r) with

r ∈ (1, 2] are used, AVARGMM

(
σ2
)

= O(∆2−r).



Proposition 2: AVAR of GMM Estimators of σ2

Moment(s) AVARGMM

(
σ2
)

with jumps AVARGMM

(
σ2
)

no jumps

M (∆, θ, 2) 3η2λ+ 2∆
(
σ2 + ηλ

)2
2∆σ4(

M (∆, θ, 2)
M (∆, θ, 4)

)
6η2λ

7
+ ∆

(
2σ4 + 44η2λ2

7
+ 100ηλσ2

49

)
+ o(∆) 2∆σ4

Ma (∆, θ, r) , r ∈ (0, 1) ∆4σ4

r2

(
π1/2Γ( 1

2
+r)

Γ( 1+r
2 )

2 − 1

)
+ o(∆) ∆4σ4

r2

(
π1/2Γ( 1

2
+r)

Γ( 1+r
2 )

2 − 1

)
+ o(∆)

Ma (∆, θ, 1) 2∆σ2
(
(π − 2)σ2 + πηλ

)
2 (π − 2) ∆σ4

Ma (∆, θ, r) , r ∈ (1, 2] ∆2−r 4π1/2ηrλσ2(2−r)Γ( 1
2
+r)

r2Γ( 1+r
2 )

2 + o(∆2−r) ∆4σ4

r2

(
π1/2Γ( 1

2
+r)

Γ( 1+r
2 )

2 − 1

)
+ o(∆)(

M (∆, θ, 2)
Ma (∆, θ, 1)

)
2∆σ2

(
(π − 2)σ2 +

(3π−8)
3

ηλ
)

+ o(∆) 2∆σ4



• Efficiency of the GMM estimator of σ2 using Ma (∆, θ, r), relative to

MLE, in the absence of jumps:
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• With jumps:
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• Taking such absolute moments of different orders in combination such

as (Ma (∆, θ, r) , Ma (∆, θ, q))′ improves upon any single one:
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6. Disentangling the Diffusion from Other Jump

Processes: The Cauchy Case

• The result so far has been the ability of maximum-likelihood to fully

distinguish the diffusive component from the Poisson jump component,

as shown in Theorem 1.

• I now examine whether this phenomenon is specific to the fact that

the jump process considered so far was a compound Poisson process,

or whether it extends to other types of jump processes.



6.1. The Cauchy Pure Jump Process

• A process is a Lévy process if it has stationary and independent incre-

ments and is continuous in probability.

• The log-characteristic function of a Lévy process is given by the Lévy-

Khintchine formula:

ψ(u) = iγu−
σ2

2
u2 +

∫ +∞

−∞

(
eiuz − 1− iuzc(z)

)
ν(dz).

• γ is the drift rate of the process

• σ its volatility from the Brownian component



• The Lévy measure ν(·) describes the pure jump component: ν(E) for

any subset E ⊂ R is the rate at which the process takes jumps of size

x ∈ E, i.e., the number of jumps of size falling in E per unit of time.

• ν(·) satisfies ∫ +∞

−∞
Min

(
1, z2

)
ν(dz) <∞



• Is it possible to perturb the Brownian noise by a Lévy pure jump
process other than Poisson, and still recover the parameter σ2 as if no
jumps were present?

• The reason one might expect this not to be possible is the fact that,
among Lévy pure jump processes, the Poisson process is the only one
with a finite ν(R), i.e., a finite number of jumps in a finite time
interval.

• All other pure jump processes are such that ν([−ε,+ε]) = ∞ for any
ε > 0, so that the process exhibits an infinite number of small jumps
in any finite time interval.

• Intuitively, these tiny jumps ought to be harder to distinguish from
Brownian noise, which it is also made up of many small moves.



• I will consider as an example the Cauchy process, which is the pure

jump process with Lévy measure

ν(dx) =
ξ

x2
dx

• This is an example of a symmetric stable distribution of index 0 <

α ≤ 2 and rate ξ > 0, with Lévy measure ν(dx) = ξα |x|−α−1 dx.

The Cauchy process corresponds to α = 1, while the limit α → 2

produces a Gaussian distribution.

• While all Lévy processes have finite quadratic variation almost surely,

the absolute variation of the Cauchy process will be infinite (but finite

for the Poisson process and gamma, beta, and simple homogeneous

examples).



6.2. Mixing Cauchy Jumps with Brownian Noise

• So I now look at the situation where

dXt = µdt+ σdWt + dCt

where Ct is a Cauchy process independent of the Brownian motion

Wt.

• By convolution

fX∆
(y) =

∫ +∞

−∞

1

(2π)1/2∆1/2σ
exp

(
−

(y − z)2

2∆σ2

)
∆ξ

∆2ξ2π2 + z2
dz.



• So: is it still possible, using maximum likelihood, to identify σ2 with

the same degree of precision as if there were no jumps?

• Theorem 2: When the Brownian motion is contaminated by Cauchy

jumps, it still remains the case that

AVARMLE

(
σ2
)

= 2σ4∆ + o(∆).



6.3. How Small are the Small Jumps?

• Theorem 2 has shown that Cauchy jumps do not come close enough to

mimicking the behavior of the Brownian motion to reduce the accuracy

of the MLE estimator of σ2.

• The intuition behind this is the following:

– While there is an infinite number of small jumps in a Cauchy pro-

cess, this “infinity” remains relatively small (just like the cardinality

of the set of integers is smaller than the cardinality of the set of

reals)

– And while the jumps are infinitesimally small, they remain relatively

bigger than the increments of a Brownian motion during the same

time interval ∆.



– In other words, they are harder to pick up from inspection of the

path than Poisson jumps are, but with a fine enough microscope,

still possible.

– And the likelihood is the best microscope there is.



Formally:

• If Y∆ is the log-return from a pure Brownian motion, then

Pr (|Y∆| > ε) =
∆1/2σ

ε

2

π
exp

(
−

ε2

2∆σ2

)
(1 + o(1))

is exponentially small as ∆ → 0.

• However, if Y∆ results from a Lévy pure jump process with jump

measure v(dz), then

Pr (|Y∆| > ε) = ∆×
∫
|y|>ε

v(dy) + o(∆)

which decreases only linearly in ∆.



• For example, for a symmetric stable process with order α:

Pr (|Y∆| > ε) = ∆×
2ξα

εα
+ o(∆).

• Cauchy: α = 1

• These different tail probabilities have implications for option pricing,

see Carr and Wu (2003).



• In other words, Lévy pure jump processes will always produce moves

of size greater than ε at a rate far greater than the Brownian motion:

– Brownian motion will have all but an exponentially small fraction

of its increments of size less than any given ε.

– Lévy pure jump processes with infinite ν(R) (i.e., all except the

compound Poisson process), will not produce quite as many small

moves as Brownian motion does: “only” a fraction 1 − O(∆) of

their increments are smaller than ε.



• Do jumps always have to behave that way? Yes, because the sample

paths of a Markov process are almost surely continuous iff, for every

ε > 0,

Pr (|Y∆| > ε) = o(∆)

• This is Ray’s Theorem (1956).

• We have seen that: Brownian has Pr (|Y∆| > ε) = o(e−1/∆) and Lévy

pure jump processes Pr (|Y∆| > ε) = O(∆).



7. Monte Carlo Simulations

• 5, 000 simulations of the jump-diffusion, each of length n = 1, 000 at

the daily frequency.

• I then estimate the parameters using MLE.



• Small sample and asymptotic distributions for σ2 in the Poisson case
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• And for the Poisson jump parameter λ :
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• Small sample and asymptotic distributions for σ2 in the Cauchy case
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• And for the Cauchy jump parameter ξ :
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• Confidence Regions when (σ2, λ) estimated together:
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• Confidence Regions when (σ2, ξ) estimated together:
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8. Conclusions

• MLE can perfectly disentangle Brownian noise from jumps provided

one samples frequently enough.

• True for a compound Poisson process, i.e., a jump-diffusion. But also

for Cauchy jumps.

• GMM estimators using absolute moments of various non-integer orders

do better than traditional moments such as the variance and kurtosis.


