Super-Brownian Motion, Critical Spatial Stochastic Systems and Measure-Valued Diffusions

Ed Perkins University of British Columbia

> Fields Institute November 5, 2003.

1. Brownian Motion:

Start at 0 in \mathbb{Z}^d , take ind't random steps (W_i) to neighbours with equal probability. $S_n = \sum_{i=1}^n W_i = \text{position at time } n.$

Rescale time by N, space by $1/\sqrt{N}$: $B^{(N)}(t) = S_{[Nt]}/\sqrt{N}, \ t \ge 0.$

Theorem 1.1 (CLT, Demoivre 1718,..., Lindeberg 1922) $\lim_{N\to\infty} P(B^{(N)}(1)\in I) = \int_I e^{-d|x|^2/2} (2\pi/d)^{-d/2} dx.$

Theorem 1.2 (FCLT, Donsker 1951) $\lim_{N\to\infty}P(B^{(N)}\in A)=P(d^{-1/2}B\in A)$ "for any" set A of paths from \mathbb{R}_+ to \mathbb{R}^d .

B is standard Brownian motion (Wiener 1923).

Universality of B

- $\{W_i\} \in \mathbb{R}^d$ any repeated independent random quantities with mean 0 and covariance $\sigma^2 I_{d \times d}$ leads to σB in limit. S_n could be a fair game.
- Instead of t=i/N may take steps "at rate N", i.e. at random times T_i , $P(T_i-T_{i-1}>t)=e^{-Nt}$ (mean 1/N exponential inter-step times).
- \cdot B is a stochastic model for particle suspended in liquid (Brown 1828), stock market fluctuations (Bachelier 1900), as building block for more realistic stochastic models (Itô 1946)...

Why Normal? If Z_1 , Z_2 and Z are independent copies of limit in CLT, then

$$\sqrt{t_1} \frac{S_{Nt_1}}{\sqrt{Nt_1}} + \sqrt{t_2} \frac{S_{N(t_1+t_2)} - S_{Nt_1}}{\sqrt{Nt_2}}
= \sqrt{t_1 + t_2} \frac{S_{N(t_1+t_2)}}{\sqrt{N(t_1 + t_2)}}
= \sqrt{t_1 + t_2} \frac{S_{N(t_1+t_2)}}{\sqrt{N(t_1 + t_2)}}$$

 $\sqrt{t_1}Z_1 + \sqrt{t_2}Z_2 \equiv \sqrt{t_1 + t_2}Z$ (same distribution) Normal distributions (mean 0) are only such distributions.

2. Super-Brownian Motion (SBM)

b>0 (branching rate), $\sigma^2>0$ (diffusion rate), $g\in\mathbb{R}$ (growth rate).

 $W \in \mathbb{R}^d$ random displacement with mean 0, covariance $\frac{\sigma^2}{b}I_{d \times d}.$

Start O(N) particles in \mathbb{R}^d . Particles behave independently. With rate bN particle at x dies. With rate bN + a particle at x gives birth to

With rate bN+g particle at x gives birth to particle at $x+W/\sqrt{N}$.

Define a finite measure on \mathbb{R}^d , X_t^N , by

$$X_t^N(A) = \frac{1}{N} \# (\text{particles in } A \text{ at time } t).$$

Theorem 2.1 (S. Watanabe 68). If $X_0^N \to X_0$, $\lim_{N\to\infty} P(X^N\in A) = P_{X_0}(X\in A)$ "for any" set A of measure-valued paths. X is a continuous measure-valued Markov process whose law P_{X_0} depends only on (X_0,b,σ^2,g) .

Call X super-Brownian motion.

Set g=0. If $X_t^{N,i}$ describes descendants of x_i at t=0, then X_t^N decomposes into a sum of $NX_0^N(\mathbb{R}^d)$ ind't clusters:

$$(*) X_t^N = \sum_{x_i} X_t^{N,i}.$$

Sad fact: Critical branching processes die out. $P(X_t^{N,i} \neq 0) \sim (Ntb)^{-1}$ as $N \to \infty$.

(*) has $NX_0^N(\mathbb{R}^d)$ summands each non-zero with prob. $\sim (Ntb)^{-1}$. Let $N \to \infty$ in (*):

$$X_t = \sum_{j=1}^{M(t)} X_t^j,$$

where (X_t^j) are independent clusters descending from a single ancestor at t=0, and M(t) has mean $\frac{X_0(R^d)}{tb}$ (Poisson distribution).

Additive Property: Run 2 independent SBM's X^1, X^2 , then clearly $X^1 + X^2$ is a SBM starting at $X_0^1 + X_0^2$.

3A Properties of Brownian Motion

1. PDE.
$$u(t,x) = E_x(\phi(B_t))$$
 solves $\frac{\partial u}{\partial t} = \frac{\Delta}{2}u$, $u_0 = \phi$.

2. Longterm Behaviour.

 $d \le 2$. $B_t \in G$ infinitely often as $t \to \infty$ for any open set G a.s. (neighbourhood recurrence).

$$d \ge 3$$
. $\lim_{t\to\infty} ||B(t)|| = \infty$ a.s. (transience).

3. Local Behaviour (Ciesielski-Taylor (1962))

Let

$$\phi_d(r) = \begin{cases} r^2 \log(1/r) \log \log \log(1/r) & d = 2\\ r^2 \log \log 1/r & d \ge 3. \end{cases}$$

 $\phi_d - m(\{B_s : s \le t\}) = c_d t$ for all $t \ge 0$ a.s. So the range of Brownian motion is a random set of Hausdorff dimension 2.

3B. Properties of SBM

1. PDE.
$$E_{X_0}(e^{-\langle X_t,\phi\rangle})=e^{-\langle X_0,v_t\rangle}$$
, where $\frac{\partial v}{\partial t}=\frac{\sigma^2\Delta v}{2}-bv^2+gv,\ v_0=\phi\geq 0.$ (Dynkin, Le Gall, Mselati; Iscoe,...)

2. Longterm Behaviour.

 X_0 finite. X becomes extinct in finite time almost surely iff $g \le 0$ (eg. use PDE).

g = 0, $X_0(dx) = mdx$, Dawson (1977) showed:

- (a) For $d \leq 2$, for any R > 0, $X_t(|x| \leq R)$ becomes neglible as $t \to \infty$.
- (b) For $d \geq 3$, $\lim_{t\to\infty} P(X_t \in A) = P(X_\infty \in A)$ where $E(X_\infty(A)) = mLeb(A)$ and X_∞ are (the only extremal) equilibrium distributions for X.

3. Local Behaviour.

 $S(X_t)=$ closed support of $X_t.$ If $d\geq 2$ $X_t(A)=C_d\frac{b}{\sigma^2}\phi_d-m(A\cap S(X_t))\ \forall A \text{ a.s. } t>0.$ (Dawson-Hochberg 79, P. 90, Le Gall-P. 95) $S(X_t)$ is a Leb. null set of Hausdorff dimension 2 for all t>0 a.s.

If d = 1, $X_t(dx) = X(t,x)dx$, where X(t,x) is the unique solution of a stochastic pde.

4. Voter Model

Each site in \mathbb{Z}^d has type 0 or 1. $\xi_t(x) = 0$ or 1. With rate 1, the type at x choses a neighbour at random and imposes its type on it.

Rescale space and time:

$$\xi_t^N(x) = \xi_{tN}(x\sqrt{N}), \ x \in \mathbb{Z}^d/\sqrt{N}. \ V_t^N(A) = m_N^{-1} \sum_{x \in A} \xi_t^N(x)$$
 is empirical distribution of 1's.

Notation

$$m_N = \begin{cases} N, & d \ge 3 \\ N/\log N & d = 2 \end{cases}$$

 (S_n) is a nearest neighbour rw.

$$p_{\text{esc}} = \begin{cases} P_0(S_n \neq 0 \ \forall n \geq 1) & d \geq 3\\ 2\pi\sigma^2 = \pi & d = 2 \end{cases}$$

Theorem 4.1 (Cox, Durrett, P. 00) Assume $d \geq 2$, $V_0^N \to X_0$. Then $\lim_{N \to \infty} P(V^N \in A) = P_{X_0}(X \in A)$ " \forall " A, where X is SBM with g = 0, $\sigma^2 = 1/d$ and $b = p_{\rm esc}$.

Remark Changing local dynamics (eg. new definition of "neighbour") leads to a new S_n and hence a new $p_{\rm esc}$ -local dynamics affect limit only through value of $p_{\rm esc}$.

Proof.

Reinterpret dynamics: $\xi_t(x) = 1 \iff$ particle at x $\xi_t(x) = 0 \iff$ no particle at x.

 $f_0^N(t,x)=\{\mathrm{no.\ of\ neighbouring\ 0's\ to}\ x\}/2d$

Particle at x dies with rate $Nf_0^N(t,x)$, and with rate $Nf_0^N(t,x)$ produces child at y chosen at random from the neighbouring 0 sites.

Similar to branching random walk with g=0, $\sigma^2=1/d$ and a random $b=f_0^N(t,x)$.

Proof shows that if $\xi_t(x) = 1$, $f_0^N(t,x) \sim p_{\rm esc}$ on average by by using a "dual coalescing random walk" to find conditional third moments. Dual RW traces back your history in time.

An Application

Let ξ_t be voter model starting from a single 1 at x=0. $S(\xi_t)=\{x:\xi_t(x)=1\}$. Take $d\geq 2$.

Q. (Bramson, Griffeath 81). Conditional on $\xi_t \neq 0$, what is asymptotic shape of $S(\xi_t)$ as $t \to \infty$?

Set t=N. $S(\xi_N)/\sqrt{N}=S(V_1^N)$ and so expect $P(S(\xi_N)/\sqrt{N}\in\cdot|\xi_N\neq 0)$ $\sim P_{\delta_0/N}(S(X_1)\in\cdot|X_1\neq 0)$ LHS is the law of a single cluster of SBM.

Theorem 4.2.(Bramson, Cox, Le Gall 01) For $d \geq 2$ and "for all" sets of sets A $\lim_{t \to \infty} P(S(\xi_t)/\sqrt{t} \in A | \xi_t \neq 0)$ = $\mathbb{N}_0(S(X_1) \in A | X_1 \neq 0)$ (law of a single cluster conditioned on non-extinction).

5. Other Limit Theorems

(Slade, Notices AMS '02)

- (a) Interacting Particle systems.
- (i) Rescaled Contact Process (stochastic model for spread of disease) at, or near criticality, will converge to super-Brownian motion with non-trivial parameters.

Durrett-P. (99), long range, d > 1. van der Hofstad-Sakai (04), medium range, d > 4.

(ii) Near critical rescaled stochastic Lotka Volterra models of Neuhauser and Pacala converge to super-Brownian motion with non-trivial drift and branching rates. d > 2. (Cox-P. 03).

(b) Lattice Trees. A connected set of neighbouring (range L) bonds in \mathbb{Z}^d containing 0 with no cycles. Pick a lattice tree with N^2 vertices at random. I^N assigns mass N^{-2} to each vertex scaled by $1/\sqrt{N}$.

(Derbez-Slade 98) (conj. Aldous 93). For d>8 and $L>L_0$ $P(I^N\in\cdot)$ approaches $\mathbf{N}_0(\int_0^\infty X_s ds\in\cdot|\int_0^\infty X_s(\mathbb{R}^d)ds=1)$, i.e., the law of an integrated cluster conditioned on total mass 1, Integrated Super Excursion (ISE). Here X is SBM $(b(L,d),\sigma^2(L,d))$

$$\begin{split} &\Lambda = \sum_i N X_{i/N}^N(\mathbb{R}^d) = \text{total progeny of br. process} \\ &ISE = \lim_N P(N^{-2} \sum_i \sum_{"x \in S(X_{i/N}^N)"} \delta_x | \Lambda = N^2). \end{split}$$

Proof uses lace expansion (Brydges-Spencer, Madras-Slade). d>8 is needed since $S(\int_0^\infty X_s\,ds)$ has dimension 4 and so will be a tree iff $d\geq 8$. Get strong non-local interactions for d<8 and logarithmic corrections if d=8.

(c) Critical Percolation in \mathbb{Z}^d . d>6, $p=p_c$. Assign mass N^{-2} to each vertex in cluster containing 0 conditioned to have size N^2 and rescaled by $N^{-1/2}$.

Conj. (Hara, Slade 98): X^N converges to ISE. Theorem (Hara, Slade 00): $L>L_0$. First and second moments converge.

(d) Fleming-Viot ProcessesModified Moran particle system.

 \mathbb{R}^d is space of allele types. Migration is now mutation of type of offspring from that of parent. N is fixed population size. Branching becomes resampling from gene pool: at t=i/N each particle (j) at x is replaced by k_j offspring of at $x+W_m/\sqrt{N}$, $m=1,\ldots,k_j$, where (k_1,\ldots,k_N) is multinomial $(N;1/N,\ldots,1/N)$.

Then the empirical measure of types F_t^N is a random probability on types which converges to F_t , the Fleming-Viot process.

Theorem 6.1 (Etheridge-March 91)

$$P(F \in \cdot) = \lim_{n} P_{F_0}(X \in \cdot |\sup_{t \le n} |X_t(\mathbb{R}^d) - 1| \le 1/n)$$

Here X is SBM $(g = 0, \sigma^2, b = 1)$.

"Proof". Consider discrete time branching random walk in which at t=1/N a particle is replaced by a Poisson (1) number of offspring displaced from it parent by W_m/\sqrt{N} . If X_t^N assigns mass 1/N to each particle at time t, then $X^N \to X$, SBM as before $(g=0,\ b=1,\ \sigma^2)$. Easy Fact: Z_1,\ldots,Z_N independent Poisson (1),

$$P((Z_1,\ldots,Z_N)\in\cdot|\sum_i Z_i=N)$$
 $\sim \text{multinomial}(N:1/N,\ldots,1/N).$

This implies

$$P(X^{N}|_{[0,T]} \in \cdot |X_{t}^{N}(\mathbb{R}^{d}) = 1 \forall t \leq T)$$

= $P(F^{N}|_{[0,T]} \in \cdot).$

Let $N \to \infty$ and hope interchange of limits on left side is OK.

7. A Family of Stochastic pde's

SBM X, " $X_t(dx) = X(t,x)dx$ " where X(t,x) is the unique solution of the stochastic pde (SPDE) $\frac{\partial X}{\partial t} = \frac{\sigma^2 \Delta X}{2} + gX + \sqrt{2bX}\dot{W}$,

Here $\dot{W}(s,x)dsdx$ are iid Normal with mean 0 and variance dsdx (space time white noise).

d=1 (Reimers, Konno-Shiga 1988) X(t,x) exists, is continuous and unique.

d > 1 $X_t(dx) \perp dx$. Solutions to (SPDE) exist and are unique when interpreted in a generalized sense.

Why $\sqrt{\ }$? By Additive Property we need $\sqrt{2bX^1}\dot{W}_1+\sqrt{2bX^2}\dot{W}_2\equiv\sqrt{2(b(X^1+X^2)}\dot{W}$ which is true since $\sqrt{c_1}Z_1+\sqrt{c_2}Z_2\equiv\sqrt{c_1+c_2}Z$ for independent normals.

In previous limit theorems, local interactions and LLN led to constant (non-obvious) parameters in limit. For many models truly interactive models arise:

- attraction/repulsion of particles
- competing species/predator prey models
- symbiotic/diploid branching

(Itô '46)
$$dY_t = d(Y_t)dt + \sigma(Y_t)dB_t$$

(Dawson '87) Use of SBM as a building block for interactive population models.

(ISPDE)

$$\frac{\partial X}{\partial t} = (A_{X_t}^* + g(x, X_t))X_t(x) + \sqrt{2b(x, X_t)X_t(x)}\dot{W}$$

$$A_{X_t}\phi(x) = \frac{1}{2}\sum_{1 \le i,j \le d} a_{ij}(x, X_t)\phi_{ij} + \sum_{i=1}^d d_i(x, X_t)\phi_i$$

$$a_{ij} = (\sigma\sigma^*)_{ij}.$$

Question: Does (ISPDE) characterize a unique measure-valued process? Existence via weak limits of natural branching particle systems. Uniqueness open—infinite dimensional, non-Lipschitz degenerate coefficients, generalized solutions (with nonlinearity).

Dawson '78:Solutions with g are absolutely continuous wrt solutions with g = 0. Set g = 0.

P. '95, Donnelly Kurtz '99: Strong equation, genealogical information, exchangeable particles systems and historical processes to construct and characterize solutions with b constant and σ , d Lipschitz. Gave tools for further study: stochastic calc., lookdown system.

(SE)
$$Y_t(\omega, y) = y_0 + \int_0^t \sigma(Y_s, X_s) dy_s + \int_0^t d(Y_s, X_s) ds$$
, $X_t(\cdot) = \int 1(Y_t(\omega, y) \in \cdot) H_t(dy)$.

 ω selects random tree; y selects branch on tree.

Theorem 7.1. σ , b Lipschitz, b constant, g = 0. (a) \exists a unique solution to (SE) which is a function of H and is strong Markov.

(b) X satisfies (ISPDE) iff X satisfies (SE) and so (ISPDE) has a unique solution.

(ISPDE) $\frac{\partial X}{\partial t} = A_{X_t}^* X_t(x) + \sqrt{2b(x, X_t) X_t(x)} \dot{W}$ Uniqueness for $b(x, X_t)$ is still open.

Finite dimensional problem: Replace $x \in \mathbb{R}^d$ by $i \in \{1,\ldots,k\}$ and $X_t \in M_f(\mathbb{R}^d)$ by $X_t \in \mathbb{R}^k_+$. $A_{X_t}\phi(i) = \sum_{j=1}^k q_{ij}(X_t)\phi(j); i \to j \text{ at rate } q_{ij}(X_t).$ (ISPDE) becomes: (SDE) $dX_t^i = \sum_{j=1}^k X_t^j q_{ji}(X_t) dt + \sqrt{b_i(X_t)X_t^i} dB_t^i,$ B^i independent Brownian motions, $i=1,\ldots,k$. More generally consider: (GSDE) $dX_t^i = d_i(X_t) dt + \sqrt{b_i(X_t)X_t^i} dB_t^i.$

Assume: (i) $b_i > 0$, continuous.

(ii) $d_i \ge 0$ on $\{x_i = 0\}$, continuous.

Problem:Degenerate diffusion so Stroock-Varadhan (1969) won't apply. Non-Lipschitz diffusion so Itô (1951) won't apply.

Counter-example: Uniqueness may fail in (GSDE). $X_t = \int_0^t \sqrt{2X_s} dB_s + \int_0^t C(1+\log^+(\frac{1}{X_s}))^{-1} ds$ If C>1, 0 is a regular boundary point and so there are solutions s.t. $\int_0^\infty 1(X_s=0) ds=0$ and $X\equiv 0$.

Thm. 7.2.(a) (Athreya, Barlow, Bass, P. 02) Assume (*) $d_i(x) > 0$ on $\{x_i = 0\}$. There is a unique (in law) solution to (GSDE).

(b) (Bass, P. 03) If d_i, b_i are locally Hölder continous then there is a unique solution to (GSDE).

Remark. (*) will fail for many examples of interest such as nearest neighbour random walk migration, $q_{ij}=1(|i-j|=1)$ for $i\neq j$. Hence interest in (b).

Proof. Stroock-Varadhan perturbation. $\mathcal{L}^0\phi = \sum_i b_i^0 x_i \phi_{ii} + d_i^0 \phi_i, \ R_\lambda^0 f = (\lambda - \mathcal{L}^0)^{-1} f.$ Must show $\frac{\partial^2 R_\lambda^0 f}{\partial x_i \partial x_j}$ is bounded on an Banach space B. For (a) $B = L^2(\mu)$. For (b) B is weighted Hölder space.

Remark. Constants in bound for (b) do not depend on k and so results extend to infinite dimensional sde's. Some hope for (ISPDE)?