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1. Brownian Motion:

Start at 0 in Z9, take ind't random steps (W)
to neighbours with equal probability.

B = 1 W; = position at time n.

Rescale time by N, space by 1/+/N:

BWI(t) = Sy /VN, t > 0.

Theorem 1.1 (CLT, Demoivre 1718,;...,
Lindeberg 1922)
limN_ooP(BWV)(1) € I) = [, e=dI51?/2 (2 ya)— /25,

Theorem 1.2 (FCLT, Donsker 1951)
limy o P(BM) € A) = P(d-1/2B ¢ 4)
“for any” set A of paths from Ry to RY.

B is standard Brownian motion (Wiener 1923),



Universality of B

- {W;} € R? any repeated independent random
quantities with mean 0 and covariance o271, ,
leads to oB in limit. S, could be a fair game.

- Instead of ¢ = /N may take steps “at rate
N",i.e. at random times L, P(T,—Ti_q >t) =
e~Nt (mean 1/N exponential inter-step times).

- B is a stochastic model for particle suspended
In liquid (Brown 1828), stock market fluctua-
tions (Bachelier 1900), as building block for
more realistic stochastic models (1t 1946)...

Why Normal? If Z1, Z> and Z are independent
copies of limit in CLT, then

S Nt .S‘ Nf( { +t ) — ;EIT N+t
/4 +V. 5] ’t 4 1 2 v ]
. vV INTq T Vi v Nto
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VI1Z1 + o Zs = '\/";31 +t2Z ( same distribution)

Normal distributions (mean 0) are only such
distributions.



2. Super-Brownian Motion (SBM)

b > 0 (branching rate), o2 > 0 (diffusion rate),
g € R (growth rate).

W c Rd random displacement with mean 0,
covariance —I{;Nd

Start O(NN) particles in R?,

Particles behave Independently.

With rate BN particle at x dies.

With rate bN 4 ¢ particle at x gives birth to
particle at x+W/+/N.

Define a finite measure on R?, XV py

AT 1
XN (A) = - t).

Theorem 2.1 (S. Watanabe 68). If X — Xg,
My oo P(XY € A) = Py (X € 4) “fc:r any”
set A of measure-valued paths.

X is a continuous measure-valued Markoy pro-
cess whose law Py, depends only on (Xg, b, 02, g).

Call X super-Brownian motion.



set g=4a, If Xf’i describes descendants of z;
at ¢ = 0, then X}V decomposes into a sum of
NXY (R ind't clusters:

N,i

Sad fact: Critical branching processes die out.
P(X;" £ 0) ~ (NtD)~ ! as NV — oo,

(*) has NX{(R%) summands each non-zero
with prob. ~ (Nth)~1. Let N — oo in (*):
M(t)
Xg = Z Xg,
g=1
where (X7) are independent clusters descend-
ing from a single ancestor at + = 0. and M(t)

d
has mean 5'%5‘3—) (Poisson distribution).



Additive Property: Run 2 iIndependent SBM's
X1, X2 thenclearly X1+ X2 is 2 SBM starting
at X5 + Xz

3A Properties of Brownian Motion

1. PDE. u(t,z) = E.(¢(B;)) solves

bu _ A
3 = U Ug = ¢.

2. Longterm Behaviour.
d < 2. B; € G infinitely often as ¢t — oo for any
open set & a.s. (neighbourhood recurrence).

d 2> 3. liMi o ||B(#)|| = o0 a.s. (transience).
3. Local Behaviour (Ciesielski-Taylor (1962))

et

bo(r) = r21og(1/r) log log log(1/r) d=2
L loglog 1 /7 d > 3.
¢a—m({Bs s <1}) = ¢yt for all ¢ >0 a.s. So
the range of Brownian motion is 3 random set
of Hausdorff dimension 2.



3B. Properties of SBM

1. PDE. E‘XD(E—{XWP) = e~ Xo) where

%% = 522‘?” — vl + gv, vg = ¢ > 0.
(Dynkin, Le Gall, Mselati: Iscoe,...)

2. Longterm Behaviour.

Xo finite. X becomes extinct in finite time
almost surely iff g < 0 (eg. use PDE).

9 =0, Xo(dz) = mdz, Dawson (1977) showed:
(a) For d < 2, for any £ > 0, Xy(|z|] < R)
becomes neglible as t — oo,

(b) Ford > 3, iMoo P(X; € A) = P(Xo € A)
where E(Xoc(A)) = mLeb(A) and X.. are (the
only extremal) equilibrium distributions for X.

3. Local Behaviour.

5(X¢) = closed support of X IFd 3D

Xe(A) = Cgtogpg — m(AN S(Xy)) VA a.s. £> 0.
(Dawson-Hochberg 79, P. 90, Le Gall-P. 95)
S(X¢) is a Leb. null set of Hausdorff dimension
2 for all £t >0 a.s.

If d =1, Xi(dz) = X(t,z)dz, where X(t,x) is
the unique solution of 2 stochastic pde.



4. Voter Model

Each site in Z¢ has type 0 or 1. &(z) = 0 or 1.
With rate 1, the type at x choses 3 neighbour
at random and imposes its type on it.

Rescale space and time:

E,; (’ﬂ) = Ew(m/—} z € Z%VN. VN) =

My Z;{, A& () is empirical d|stnbutron of 1's.

Notation

N, d> 3
mopyy =—
NTIN/logN  d=2

(Sn) is a nearest neighbour rw.

. PD(Sﬂ,;&D\?’nz 1) d>3
FESC P2rol = 7 g=0

Theorem 4.1 (Cox, Durrett, P. 00) Assume
d>2, ViV — X,. Then

rimﬁ,-ﬁx,P(vf*" € A) = Px, (X € A) “v' A, where
A 1s SBM with ¢ =0, 0% = 1/d and b = pesc.
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Remark Changing local dynamics (eg. new
definition of “neighbour”) leads to a new S,
and hence a new pesc—local dynamics affect
limit only through value of pesc.

Proof.
Reinterpret dynamics: £(z) =1 <= particle at z
&(xz) =0 < no particle at z.

fﬂ‘(t, x) = {no. of neighbouring 0’s to x}/2d

Particle at x dies with rate Nf '(t,2), and with
rate Nf '(t,z) produces child at y chosen at
random from the neighbouring O sites.

Slmrlar to branching random walk with g = 0,
= 1/d and a random & = f¥(¢,z).

Proof shows that if &(z) = 1, (¢, 2) ~ pesc
on average by by using a “dual coalescing ran-
dom walk"” to find conditional third moments.
Dual RW traces back your history in time.



An Application

Let & be voter model starting from a single 1
at x = 0. S(&) ={z: &(x) = 1}. Take d > 2.

Q. (Bramson, Griffeath 81).
Conditional on & # 0, what is asymptotic shape
of S(&) as t — oo?

Set t=N. S(&n)/vVN = S(V{) and so expect
P(S(En)/VN € -|¢n # 0)

~ Pso/n(8(X1) € 1| X1 # 0)

LHS is the law of a single cluster of SBM.

Theorem 4.2.(Bramson, Cox, Le Gall 01)
For d > 2 and “for all” sets of sets 4

iMoo P(S(&)/VE € Al&r # 0)

= Np(5(X1) € A| X1 # 0) (law of a single clus-
ter conditioned on non-extinction).
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5. Other Limit Theorems
(Slade, Notices AMS '02)

(a) Interacting Particle systems.

(1) Rescaled Contact Process (stochastic model
for spread of disease) at, or near criticality, will
converge to super-Brownian motion with non-
trivial parameters.

Durrett-P. (99), long range, d > 1.

van der Hofstad-Sakai (04), medium range,
d> 4.

(if) Near critical rescaled stochastic Lotka Volterra
models of Neuhauser and Pacala converge to
super-Brownian motion with non-trivial drift
and branching rates. d > 2. (Cox-P. 03).

Wi



(b) Lattice Trees. A connected set of neigh-
bouring (range L) bonds in Z4 containing 0
with no cycles. Pick a lattice tree with N2
vertices at random. I¥ assigns mass N—2 to
each vertex scaled by 1/+/N.

(Derbez-Slade 98) (conj. Aldous 93). For
d>8and L > Ly P(IN ¢ .) approaches
Np(Jg© Xsds € -] [§° Xs(RTds = 1), i.e. the
law of an integrated cluster conditioned on to-
tal mass 1, Integrated Super Excursion (ISE).
Here X is SBM (b(L,d), c2(L, d))

A=T JNTX,E}FN(RGEJ = total progeny of br. process
ISE = limy P(N~2Y, 30 eS(XY, ) 5z|A = N2).

Proof uses lace expansion (Brydges-Spencer,
Madras-Slade). d > 8 is needed since

S5(fo° Xsds) has dimension 4 and so will be 3
tree iff d > 8. Get strong non-local interactions
for d < 8 and logarithmic corrections if d — 8.
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(¢) Critical Percolation in Z4. d > 6, B,
Assign mass N~ 2 to each vertex in cluster con-
taining O conditioned to have size N2 and rescaled
by N—1/2

Conj. (Hara, Slade 98): X" converges to ISE.
Theorem (Hara, Slade 00); I > Lqg. First and
second moments converge.

(d) Fleming-Viot Processes

Modified Moran particle system.

R is space of allele types. Migration is now
mutation of type of offspring from that of par-
ent. N is fixed population size. Branching be-
comes resampling from gene pool: at ¢ = i/N
each particle (j) at z is replaced by &; off-
spring of at = + W,,,/v'N, m = 1,....k;, where

H

(k1,...,kn) is multinomial (N;1/N,...,1/N).

Then the empirical measure of types F¥ isn
random probability on types which converges
to F, the Fleming-Viot process.

Theorem 6.1 (Etheridge-March 91)
P(Fe-)=IlimPr(X € | SUD [ X, (RY) - 1] < 1/n)
L=<

Here X is SBM (g =0, 02, b= 1).

13



“"Proof’'. Consider discrete time branching
random walk in which at t = 1/N a particle is
replaced by a Poisson (1) number of offspring
displaced from it parent by Wy,/v/N. If X} as-
signs mass 1/N to each particle at time ¢, then
XN — X, SBM as before (¢ =0, b= 1, ¢2).

Easy Fact: Z;,..., Zy independent Poisson (1),

P((Z1,...,2y) €- fZ i =N)
~ multinomial(N ; l/N? —
This implies

P(Xf.\fr

0,7] € 1X{' (RY) = 1vt < T)
= B(EN

[6.2] € -

Let N — oo and hope interchange of limits on
left side is OK. [
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7. A Family of Stochastic pde’'s

SBM X, “Xy(dx) = X(t,z)dz" where X(t,z) is
the unigue solutmn of the stochastic pde
(SPDE) 2 =1¢ *’—‘*X + gX + V26X W,

Here W (s,z)dsdz are iid Normal with mean O
and variance dsdx (space time white noise).

d =1 (Reimers, Konno-Shiga 1988)
X(t,z) exists, is continuous and unique.

d > 1 Xy(dx) L dz. Solutions to (SPDE) exist
and are unique when interpreted in 3 general-
ized sense.

Why V/_? By Additive Property we need
V2bXIW + V26 X2, = \/2(b(X 1 + X)W
which is true since V€141t /22 = \/c1 F a2

for independent normals.
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In previous limit theorems, local interactions
and LLN led to constant (non-obvious) param-
eters in limit. For many models truly interac-
tive models arise:

e attraction/repulsion of particles

e cOompeting species/predator prey models

e symbiotic/diploid branching

(Itd '46) dY; = d(Y;)dt + o (V,)dB;

( Dawson '87) Use of SBM as a building block

for interactive population models.

(ISPDE)

X = (Axt+g(a~ X)) Xy(2)+1/2b(z, X:) X, ()W
AXfm(&*") = 521{1 J<d %ig (z, Xt)d’z,j_,"z?—]_ d;(z, Xi) i
Qi = (JU*)W

Question: Does (ISPDE) characterize 3 unique
Measure-valued process? Existence via weak
limits of natural branching particle systems.
Uniqueness open—infinite dimensional, non-Lipschitz
degenerate coefficients, generalized solutions
(with nonlinearity).

16



Dawson '78:Solutions with g are absolutely con-
tinuous wrt solutions with ¢ = 0. Set g =i,

P. '95, Donnelly Kurtz '99: Strong equation,
genealogical information, exchangeable parti-
Cles systems and historical processes to con-
struct and characterize solutions with b con-
stant and o, d Lipschitz. Gave tools for further
study: stochastic calc., lookdown system.

(SE) Yi(w, y) = yo+[§ o (Yz, Xo)dys+ JE d(Va, Xs)ds,
Xi() = [1(Yi(w, y) € ) Hy(dy).

w selects random tree; y selects branch on tree.

Theorem 7.1. o, b Lipschitz, b constant, g =
0. (a) 3 a unigque solution to (SE) which is a
function of H and is strong Markov.

(b) X satisfies (ISPDE) iff X satisfies (SE) and
so (ISPDE) has a unique solution.
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(ISPDE) 2X = A% Xi(z) + \/2b(x, X4) Xi(2)W
Uniqueness for b(x, X3) is still open.

Finite dimensional problem: Replace = € R? by
t€{1,....k} and X; € My(R%) by X, € RE.
AXf@(i) — Ef 1 QE?(Xt)Qj(.}) 1. — gatrate Q13(Xt)
(ISPDE) becomes
(SDE) d z§_1 xi q5:(Xt)dt+ gb (Xo)XidBE,
B mclependent Brownian motions, i =1,... k.
More generally consider: ~

(GSDE) dX} = d;(Xy)dt + /b;(X;) X]dBj.

Assume: (i) b; > 0, continuous.

(i) d; > 0 on {z; = 0}, continuous.
Problem:Degenerate diffusion so Stroock-Varadhan
(1969) won't apply. Non-Lipschitz diffusion SO
Itd (1951) won't apply.

Counter-example:Uniqueness may fail in (GSDE).
Xy = [5v/2XsdBs + [§C(1 + logt (L)) ~1ds

It C"> 1, 0 is a regular boundary point and SO
there are solutions s.t. [§°1(X, = O)ds = 0O

and X = 0.
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Thm. 7.2.(a) (Athreya, Barlow, Bass, P. 02)
Assume (*) d;(z) > 0 on {#; =0},
There is a unique (in law) solution to (GSDE).

(b) (Bass, P. 03) If d;,b; are locally Hélder
continous then there is 3 unigue solution to
(GSDE).

Remark. (*) will fail for many examples of in-
terest such as nearest neighbour random walk
migration, g;; = 1(|s —J| = 1) for i # §. Hence
interest in (b).

Proof. Stroock-Varadhan perturbation.
L0 = 300 + d2;, RO = (A — £O)-17.

82R9f
Must show gﬁi IS bounded on an Banach
101

Space B. For (a) B = L?(u). For (b) B is
weighted Hdlder space.

Remark. Constants in bound for (b) do not
depend on & and so results extend to infinite
dimensional sde's. Some hope for (ISPDE)?
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