$196884=1+196883$ A Monstrous tale

Finite simple groups, quantum logic, replicable functions, dispersionless flow, and Witten's manifold

John McKay
Concordia University, Montreal

CRM Nov. 5th. 2K3 - Fields Mar. 8th. 2K4

Montreal \& Toronto

CRM/Fields prize lecture

Kronecker: Die natürlich Zahlen hat der liebe Gott gemacht. Alles andere ist Menschenwerk.

Ingredients: $\mathbf{N}=1,2,3, \ldots$

The Oxford English Dictionary tells us:

MONSTROUS:
of unnaturally or extraordinarily huge dimensions; greatly to be marvelled at; astounding.

MOONSHINE:
something unsubstantial, of dubious quality.

(Toy) Example: Symmetric group

$$
\begin{aligned}
& P_{g}(q)=\operatorname{det}(1-R(g) q) \\
& f_{\langle g\rangle}=1 / P_{g}(q) \\
& \mathrm{f}_{\langle 13\rangle}=\frac{1}{(1-q) 2}, \quad f_{\langle 2,1\rangle}=\frac{1}{1-q 2}, \quad f_{\langle 3\rangle}=\frac{1-q}{1-q 3} \\
& \left.\begin{array}{cccr}
q 0 & 1 & 1 & 1 \\
q 1 & 2 & 0 & -1 \\
q 2 & 3 & 1 & 0 \\
q 3 & 4 & 0 & 1 \\
q 4 & 5 & 1 & -1 \\
q 5 & 6 & 0 & 0 \\
q 6 & 7 & 1 & 1 \\
q 7 & 8 & 0 & -1 \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right\}=B_{0} \\
& B_{k}=B_{0}+k[6,0,0]
\end{aligned}
$$

Less naïve:

Replace $P_{g}(q)$ by

$$
\prod_{k \geq 1} P_{g}\left(q^{k}\right)
$$

to get:

$$
\begin{array}{lll}
f_{\langle 13\rangle}= & f_{\langle 2,1\rangle}= & f_{\langle 3\rangle}= \\
\prod_{k \geq 1} \frac{1}{\left(1-q^{k}\right) 2}, & \prod_{k \geq 1} \frac{1}{1-q^{2 k}}, & \prod_{k \geq 1} \frac{1-q^{k}}{1-q^{3 k}}
\end{array}
$$

Now replace $f_{\langle\cdot\rangle}$ by $q^{-\frac{r}{24}} f_{\langle\cdot\rangle}$ to get

$$
f_{\langle 13\rangle}=\eta(q)^{-2}, \quad f_{\langle 2,1\rangle}=\eta(q 2)^{-1}, \quad f_{\langle 3\rangle}=\frac{\eta(q)}{\eta(q 3)}
$$

with Dedekind's η function:

$$
\eta(q)=q^{\frac{1}{24}} \prod_{k \geq 1}\left(1-q^{k}\right)
$$

$|\mathbb{M}|=$
$8080174247945 \cdots 61710757005754368000000000$
$=2^{46} 3^{15} 59.76 .112 \cdot 133 \cdot 17.19 .23 \cdot 29.31 .41 .47 .59 .71$
a product of the fifteen supersingular primes p for which $\Gamma_{0}(p)^{+}$has genus zero.

Riemann maps:

$$
w(z)=c z+a_{0}+\sum_{k \geq 1} a_{k} / z^{k}
$$

from the exterior of a disk to the simply connected complement of a Jordan curve in $\mathbf{C} \cup\{\infty\}$. We take $a_{0}=0$ and $c=1$, and compose with $z \rightarrow \exp (-2 \pi i z)=1 / q$.

Our interest is in

$$
f(z)=\frac{1}{q}+\sum_{k \geq 1} a_{k} q^{k}, \quad q=\mathrm{e}^{2 \pi i z}, \quad z \in \mathcal{H}
$$

where $\widehat{G_{f} \backslash \mathcal{H}}$ has genus zero and $f(\gamma z)=f(z)$ if and only if $\gamma \in G_{f}$.

For \mathcal{L} an ordered lattice, we define an equivalence relation on $\mathcal{L} \times \mathcal{L}$ by:
$\{a, b\} \equiv\{c, d\} \quad$ if $\quad a \wedge b=c \wedge d \quad \& \quad a \vee b=c \vee d$.

When \mathcal{L} is the division lattice on \mathbf{N}, this relation becomes

Norton's equivalence relation on $\mathbf{N} \times \mathbf{N}$:

Norton: $\{a, b\} \equiv\{c, d\}$ if $\operatorname{gcd}(a, b)=\operatorname{gcd}(c, d)$ and $\operatorname{Icm}(a, b)=\operatorname{Icm}(c, d)$.

Faber polynomials: For f as above, the Faber polynomial of degree n in f is defined (as are the Grunsky coefficients, $h_{m, n}$) by:

$$
F_{n, f}(f)=\frac{1}{q^{n}}+n \sum_{m \geq 1} h_{m, n} q^{m}
$$

They are generated by

$$
\frac{q f^{\prime}(q)}{f(p)-f(q)}=\sum_{n=0}^{\infty} F_{n}(f(p)) q^{n}
$$

with $F_{0}(f)=1, F_{1}(f)=f$,
$F_{2}(f)=f 2-2 a_{1}, F_{3}(f)=f 3-3 a_{1} f-3 a_{2}$,
$F_{4}(f)=f 4-4 a_{1} f 2-4 a_{2} f+2 a_{1} 2-4 a_{3}$, \& more generally:

$$
F_{n}(f)=\operatorname{det}\left(f I-A_{n}\right),
$$

where
$A_{n}=\left(\begin{array}{c|ccccc}a_{0} & 1 & & & \\ 2 a_{1} & a_{0} & 1 & & 0 & \\ \vdots & \vdots & \vdots & & & \\ (n-2) a_{n-3} & a_{n-4} & a_{n-5} & \ldots & 1 & \\ (n-1) a_{n-2} & a_{n-3} & a_{n-4} & \ldots & a_{0} & 1 \\ n a_{n-1} & a_{n-2} & a_{n-3} & \ldots & a_{1} & a_{0}\end{array}\right)$

The index grading is

$$
\operatorname{ind}\left(h_{r, s}\right)=r+s
$$

so that $\operatorname{ind}\left(a_{k}\right)=k+1$, and

$$
\operatorname{ind}\left(h_{a, b} \cdot h_{c, d}\right)=\operatorname{ind}\left(h_{a, b}\right)+\operatorname{ind}\left(h_{c, d}\right)
$$

Norton's remarkable result is that when the Grunsky coefficients of f are compatible with Norton's equivalence relation in that $h_{a, b}=h_{c, d}$ if $\{a, b\} \equiv\{c, d\}$, then $h_{a, b}$ is polynomially dependent on $\left\{a_{k}\right\}, k \in B$, the Norton basis,

$$
\begin{gathered}
B=\{1,2,3,4,5,7,8,9,11,17,19,23\}, \\
|B|=12 .
\end{gathered}
$$

This compatibility is Norton's definition of replicability of f.

The Faber polynomial, $F_{n, f}(f)$ may be interpreted as the action of a generalized Hecke operator:

For the elliptic modular function, j, we have:
$\forall n \in \mathbf{N}$

$$
n T_{n}(j)=\sum_{\substack{a d=n \\ 0 \leq b<d}} j\left(\frac{a z+b}{d}\right)=F_{n, j}(j)
$$

This property we generalize to replicable functions by defining replicable functions as those functions $f=f^{(1)}$, such that there are functions of the same form satisfying
$\forall n \in \mathbf{N}$

$$
n \widehat{T}(n)(f)=\sum_{\substack{a d=n \\ 0 \leq b<d}} f^{(a)}\left(\frac{a z+b}{d}\right)=F_{n, f}(f)
$$

We find

$$
h_{m, n}(f)=\left.\widehat{T}_{n}(f)\right|_{q^{m}} .
$$

Replicability encapsulates the property that

$$
f^{(n)}\left(q^{n}\right)=F_{n, f}(f)-\sum^{\prime}
$$

is a series in q^{n}.

For prime p,

$$
\begin{aligned}
T_{p} & =\frac{1}{p} V_{p}+U_{p} \\
V_{p} & : f(q) \longrightarrow f\left(q^{p}\right)
\end{aligned}
$$

We define a generalized Hecke operator (cf. Bott: Cannibalistic class)

$$
\widehat{T}_{p}=\frac{1}{p} \widehat{V}_{p}+U_{p}
$$

$$
\hat{V}_{p}=\Psi^{p} \circ V_{p}, \quad \Psi^{p}=\text { "Adams operator" }
$$

$$
\widehat{V}_{p}: \quad f(q) \longrightarrow f^{(p)}\left(q^{p}\right)
$$

$a_{n}^{(p)}=p h_{p n, p}-p a_{p^{2} n}$

On \mathbb{M} :

$$
\begin{array}{ccc}
f & \longrightarrow & f^{(k)} \\
\downarrow & & \downarrow \\
f_{g} & \longrightarrow & f_{g^{k}}
\end{array}
$$

The Grunsky coefficients:

There are identities, $h_{m, 1}=a_{m}, h_{r, s}=h_{s, r}$. Norton's basis theorem follows a descent argument on the index. The rows are in decreasing index.

The coefficients $\widehat{h}_{r, s}=(r+s) h_{r, s}$ satisfy $\widehat{h}_{r, s}=(r+s) a_{r+s-1}+\sum_{m=1}^{r-1} \sum_{n=1}^{s-1} a_{m+n-1} \widehat{h}_{r-m, s-n}$.
$a_{6}=h_{1,6} \quad h_{2,5} \quad h_{3,4} \quad h_{4,3} \quad h_{5,2} \quad h_{6,1}=a_{6}$ $a_{5}=h_{1,5} \quad h_{2,4} \quad h_{3,3} \quad h_{4,2} \quad h_{5,1}=a_{5}$ $a_{4}=h_{1,4} \quad h_{2,3} \quad h_{3,2} \quad h_{4,1}=a_{4}$ $a_{3}=h_{1,3} \quad h_{2,2} \quad h_{3,1}=a_{3}$ $a_{2}=h_{1,2} \quad h_{2,1}=a_{2}$ $a_{1}=h_{1,1}=a_{1}$

It is conjectured that the replicable functions are either:

- "modular fictions" $f=1 / q+c q$.

For $c \in\{0,1,-1\}$ we have exp, cos, and sin. or

- principal moduli with invariance groups, G_{f} such that $\widehat{G_{f} \backslash \mathcal{H}}$ is a genus zero Riemann surface and $\Gamma_{0}\left(N_{f}\right) \subseteq G_{f}$ is commensurable with Γ.

It has been proved that all such principal moduli with q-coefficients in \mathbf{Z} are replicable.

The Schwarz derivative

We define the Schwarz derivative (a quadratic differential) of f with respect to z as

$$
\{f, z\}=2 u^{\prime}-u 2, \quad u=f^{\prime \prime} / f^{\prime}
$$

for which, if

$$
f(z)=\frac{a g(z)+b}{c g(z)+d}, \quad a d-b c \neq 0
$$

we have $\{f, z\}=\{g, z\}$ and conversely.

For f of modular weight $0,\{f, z\}$ has modular weight 4. When f is a principal modulus this implies that

$$
\{f, z\}=R(f) f^{\prime 2}
$$

where R is a rational function of f.

This is related to the Grunsky coefficients of the Hecke operator by

$$
\zeta(-1)\{f, q\}=\sum_{m, n \geq 1} m n h_{m, n} q^{m+n-2} .
$$

Dispersionless Hirota hierarchy

The τ-function satisfies the dispersionless Hi rota equation

$$
\zeta(-1)\{w, z\}=-z^{2} \sum_{m, n \geq 1} z^{-m-n} \frac{\partial \ln \tau}{\partial t_{m} \partial t_{n}} .
$$

Comparing this with the above equation we see that

$$
\frac{\partial \ln \tau}{\partial t_{m} \partial t_{n}}=-m n h_{m, n}
$$

The relation above between the Schwarzian derivative and the Grunsky coefficients is a differential generalization of Borcherds product for j.

The Borcherds product for

$$
j(q)=\frac{1}{q}+\sum_{k \geq 0} c_{k} q^{k}
$$

is

$$
j(p)-j(q)=\frac{1}{p} \prod_{\substack{m>0 \\ n \in \mathbf{Z}}}\left(1-p^{m} q^{n}\right)^{c_{m n}} .
$$

$\mathbf{Z}\left(\mathbf{1}-\mathbf{p}^{m} q^{n}\right)^{c_{m n}}$

Affine Dynkins and sporadic correspondences

There is a distinguished set of nine conjugacy classes of \mathbb{M} in which the product of any pair of Fischer involutions lies. These classes are described in the Atlas. By monstrous moonshine, each class corresponds to a unique modular function and thus we have a replicable function attached to each node of the affine E_{8} diagram. Here class names lie below the modular levels.
E_{8}

E_{7}

F_{4}

$$
\circ_{1}-o_{2}-\circ_{3} \quad \circ_{4}-o_{2}
$$

E_{6}

G_{2}

$$
\mathrm{o}_{1}-\mathrm{o}_{2}-\mathrm{o}_{3}
$$

A question: What operator takes a Monstrous Moonshine function to its neighbours? In the "McKay correspondence" it is tensoring by the restriction of the fundamental representation of $S U_{2}$.

References

Conway \& Norton Bull. Lond. Math. Soc. 1979

Bonora \& Sorin hep-th/0211283

Carroll \& Kodama hep-th/9506007

Teo, Lee-Peng hep-th/0305005

