Locating Mobile Servers under Stochastic Demands and Congestion

Oded Berman
Dmitry Krass
Seokjin Kim

- Problem Formulation
 - Assumptions & the Problem
- Overlapping Regions
 - Multi-class Multi-server Systems with Restricted Customer-Server Matchings
 - Caldentey & Kaplan (2002, Submitted to QS), Foley & McDonald (2001, AAP)
- 3 Location Models in the Literature
 - Feasible for the Problem?
 - ReVelle & Hogan (1989, TS), Ball & Lin (1993, OR),
 Marianov & ReVelle (1994, EJOR)
- 2 New Location Models
- Evaluation of Models & Conclusion

Problem Formulation¹

- Assumptions
 - Discrete undirected network G=(N,L)
 - Poisson demands w/ λ_i at node i, $i \in N$
 - (Customer Assignment Policy) A customer is assigned to the closest available server within a pre-specified distance (radius). Or she is lost.
 - Ties are broken randomly
 - Each mobile server completes service in an exponential total service time w/ rate μ
 - total service time = travel time to node and back to home facility + on-scene service time
- Fact
 - Location exists at nodes.

Problem Formulation²

The Problem is

- to find a location $x = (x_1, ..., x_J)$ minimizing the number of mobile servers to be located on the site set X, while keeping the availability $A_i(x)$ of node i at least the required level α , $i \in N$
- where $A_i(x) = Prob(a$ customer at node i finds at least one available server upon calling for service, for a given location x).

Background

- Applied for locating emergency service vehicles
- A required availability α is enforced.
- Hard to find $A_i(x)$ analytically even for a given location x. Simulation is an alternative.

Overlapping Regions

Bipartite Graph Representation

Problem Formulation³

Notations

- N =Set of nodes
- X = Set of facility sites
- $x = (x_1, ..., x_n) = \text{Location vector (Location)}$
- x_j = Number of servers at facility j
- F(x) =Set of facilities
- N_p = Set of nodes within the radius of point $p \in G$
- N_i = Region $i \in N$
- X_p = Set of facility sites within the radius of point p
- $F_p(x) =$ Set of facilities within the radius of point p
- $k_i(x)$ = Number of servers located in X_i
- $\lambda(S)$ = Rate at which demands originate from $S \subseteq N$
- B(S) = Union of all the nodes in N_n , $n \in S$
 - = Neighborhood of S

Problem Formulation⁴

Mathematical programming formulation

$$(P) \qquad \min \sum_{j \in X} x_{j}$$

$$s.t. \ A_{i}(x) \ge \alpha, \ i \in N$$

$$x_{j} = 0, 1, ...$$

What most researchers have done

st
$$(A_i(x) \approx) A_i \geq \alpha, i \in N$$

What we are trying to do

st
$$(A_i(x) \ge)$$
 $A_i \ge \alpha$, $i \in N$

Local Regions

Region-i

$$N_{i}, i \in N$$

Region-i demand rate

$$\lambda(N_{i}) = \sum_{n \in N_{i}} \lambda_{n}$$

- Neighborhood of region i $B(N_i) = \bigcup_{n \in N} N_n$
- Given a location x, is an $M/M/k_i(x)/k_i(x)$ system with demand rate $\lambda(N_i)$ embedded in N_i ?
 - Not necessarily.
 - Yes, if all the demands originating from N_i are served only by servers at node i. (only for complete bipartite graphs)

M/M/k/k Systems

 Availability of the M/M/k/k system with demand rate d

$$A(d,k) = \left[\sum_{n=0}^{k-1} \frac{\left(\frac{d}{\mu}\right)^n}{n!}\right] \left[\sum_{n=0}^{k} \frac{\left(\frac{d}{\mu}\right)^n}{n!}\right]^{-1}$$

- Decreasing in d; increasing in k
- Minimum number of servers for α-availability

$$b(d) = \min \{k \ge 0 \mid A(d, k) \ge \alpha\}$$

• Non-decreasing in d; $A(d,b(d)) \ge \alpha$

Example: Path w/ Large Radius

- Centered location: $x^c = (x_1^c = 0, x_2^c = 3, x_3^c = 0)$
 - M/M/3/3 with demand rate 5

A Feasible Location for (P)

$$A_1(x^c) = A_2(x^c) = A_3(x^c) = 0.84 > \alpha = 0.8$$

ReVelle and Hogan's Model

- Region-specific approximations for availability
- Linear integer programming formulation

$$(RH) \qquad \min \sum_{j \in X} x_j$$

$$s.t. \sum_{j \in X_i} x_j \ge b_i, i \in N$$

$$x_j = 0, 1, ...$$

• where b_i is the smallest $k_i \ge 0$ s.t.

$$(A_i(x) \approx) \quad A_i = 1 - \rho_i^{k_i} = 1 - \left(\frac{\lambda(N_i)}{k_i \mu}\right)^{k_i} \ge \alpha$$

Ball & Lin's Model

Linear integer programming formulation

$$(BL) \min \sum_{j \in X} \sum_{k=1}^{K} x_{jk} \qquad s.t. \quad x_{jk} = 0, 1$$

$$\sum_{j \in X_{j}} \sum_{k=1}^{K} -\log(P[D(j) \ge k]) x_{jk} \ge -\log(1-\alpha), \quad i \in N$$

Nonlinear availability constraints

$$1 - A_{i}(x) \le 1 - A_{i} = \prod_{j \in X_{i}} \prod_{k=1}^{K} P[D(j) \ge k]^{X_{jk}} \le 1 - \alpha, \ i \in N$$

- D(j) = Number of demands from N_j during (0, U) ~ Poisson with mean $U\lambda(N_j)$
- U =Upper bound on exponential service times

Marianov & ReVelle's Model

- Assumption:
 - For a given location x, N_i is an $M/M/k_i(x)/k_i(x)$ system with demand rate

$$\lambda(N_{i}) = \sum_{n \in N_{i}} \lambda_{n}$$

Linear integer programming formulation

$$(MR) \quad \min \sum_{j \in X} x_{j}$$

$$s.t. \quad \sum_{j \in X_{i}} x_{j} \ge b(\lambda(N_{i})), \quad i \in N$$

$$x_{j} = 0, 1, ...$$

Example Revisited¹

- Centered location: $x^{c} = (x_{1}^{c} = 0, x_{2}^{c} = 3, x_{3}^{c} = 0)$
 - M/M/3/3 with demand rate 5

1

Example Revisited²

Marianov & ReVelle's model

min
$$x_1 + x_2 + x_3$$

s.t. $x_1 + x_2 \ge 2$
 $x_1 + x_2 + x_3 \ge 3$
 $x_2 + x_3 \ge 2$
 $x_1, x_2, x_3 = 0, 1, ...$

- **Solution:** $x^m = (x_1^m = 1, x_2^m = 1, x_3^m = 1)$
- Compare with: $x^c = (x_1^c = 0, x_2^c = 3, x_3^c = 0)$

An Infeasible Location for (P)

$$A_1(x^m) = 0.76 < \alpha = 0.8,$$

$$A_2(x^m) = 0.88 > \alpha = 0.8,$$

$$A_3(x^m) = 0.77 < \alpha = 0.8.$$

Model BKK1

- Facility-specific lower bounds for availability
- Place "all or nothing" at facility j.
- Weighted set covering problem formulation

$$(BKK1) \quad \min \sum_{j \in X} b(\lambda(N_j)) y_j$$

$$s.t. \sum_{j \in X_i} y_j \ge 1 \quad i \in N$$

$$y_j = 0, 1 \quad j \in X$$

• where $y_j=1$, if a facility is located at facility j and $y_i=0$, otherwise

Why is BKK1 Feasible for (P)?

 Decoupling the underlying system into M/M/k/k systems

 Insensitive to customer assignment policies and queue capacities

Example Revisited³

- Centered location: $x^{c} = (x_{1}^{c} = 0, x_{2}^{c} = 3, x_{3}^{c} = 0)$
 - M/M/3/3 with demand rate 5

1

Example Revisited⁴

BKK1 for the example

min
$$2y_1 + 3y_2 + 2y_3$$

s.t. $y_1 + y_2 \ge 1$
 $y_1 + y_2 + y_3 \ge 1$
 $y_2 + y_3 \ge 1$
 $y_1, y_2, y_3 = 0, 1$

- Optimal solution: $y^b = (y_1^b = 0, y_2^b = 1, y_3^b = 0)$
- Server allocation: $x^b = (x_1^b = 0, x_2^b = 3, x_3^b = 0) = x^c$
- BKK1 is safe!

$$A_1(x^b) = A_2(x^b) = A_3(x^b) = 0.84 > \alpha = 0.8$$

Model BKK2¹

- Node-specific lower bounds for availability
- Goal programming approach
- (1st Step) Solve weighted set covering problem for facility location

(WSCP)
$$\min \sum_{j \in X} y_{j} b(\sum_{n \in N_{j}} \lambda(N_{n}))$$

$$s.t. \sum_{j \in X_{i}} y_{j} \ge 1 \quad i \in N$$

$$y_{j} = 0, 1 \quad j \in X$$

• Let y^* be optimal for (WSCP).

1

Model BKK2²

(2nd Step) Solve integer program to allocate servers

$$(BKK 2) \quad \min \sum_{j \in X} x_{j}$$

$$s.t. \quad x_{j} \leq My_{j}^{*} \quad j \in X$$

$$\sum_{j \in X_{i}} x_{j} \geq b(\lambda(B(F_{i}(y^{*}))) \quad i \in N$$

$$x_{j} = 0, 1, \dots \quad j \in X$$

- where M is a big number
- Fact
 - Extends readily to capacitated-facility cases

BKK1 and BKK2

Optimal set covering solution

$$y^* = (y_1^* = 0, y_2^* = 1, y_3^* = 0, y_4^* = 1, y_5^* = 0)$$

BKK2

BKK1

Why is BKK2 Feasible for (P)?

Example Revisited⁵

- Centered location: $x^{c} = (x_{1}^{c} = 0, x_{2}^{c} = 3, x_{3}^{c} = 0)$
 - M/M/3/3 with demand rate 5

Example Revisited⁶

Set covering problem for facility location

min
$$y_1 + y_2 + y_3$$

s.t. $y_1 + y_2 \ge 1$
 $y_1 + y_2 + y_3 \ge 1$
 $y_2 + y_3 \ge 1$
 $y_1, y_2, y_3 = 0, 1$

- Optimal solution: $y^s = (y_1^s = 0, y_2^s = 1, y_3^s = 0)$
- Server allocation: $x^s = (x_1^s = 0, x_2^s = 3, x_3^s = 0) = x^c$
- BKK2 is safe!

$$A_1(x^s) = A_2(x^s) = A_3(x^s) = 0.84 > \alpha = 0.8$$

1

Simulation Experiments

- Data sets for 108 instances
 - $|N| = 20, 30, 50, \quad \alpha = 0.8, 0.85, 0.9, 0.95$
 - $\lambda_i \sim Uniform(1,10), \quad \mu = 24, 36, 48$
 - Link lengths ~ *Uniform(1,50)*
 - Radii = (0.4, 0.6, 0.8) (Average Shortest Distance)
- For each instance,
 - 5 Location models (with 2 choices of *U* for Ball & Lin's model) are formulated.
 - Simulated on locations (CPLEX8.1 solutions) given by the models

Computational Results¹

LOCATION	ReVelle &	Ball & Lin	Ball & Lin	Marianov	BKK1	BKK2
MODELS	Hogan	w/ 50%	w/ 75%	& ReVelle		

Fraction of infeasible nodes

AVERAGE	0.1131	0.1984	0.0000	0.1003	0.0000	0.0000
MAXIMUM	0.5500	0.7500	0.0000	0.3333	0.0000	0.0000

• Minimum deviations from α

AVERAGE	-0.0702	-0.0252	0.0664	-0.0738	0.0239	0.0237
MINIMUM	-0.4104	-0.0713	0.0223	-0.3629	0.0000	0.0000

• (Computational time) / |N|

AVERAGE	0.0006	0.0070	0.0228	0.0003	0.0002	0.0005
MAXIMUM	0.0277	0.2057	0.7064	0.0098	0.0025	0.0055

Computational Results²

LOCATION	ReVelle &	Ball & Lin	Ball & Lin	Marianov	BKK1	BKK2
MODELS	Hogan	w/ 50%	w/ 75%	& ReVelle		

• (Number of servers) / |N|

AVERAGE	0.6165	0.5840	0.7956	0.6152	0.6836	0.7264
MINIMUM	0.3000	0.3000	0.4400	0.3000	0.3600	0.4200
MAXIMUM	1.1000	1.0500	1.3667	1.1500	1.2333	1.2333

• (Number of facilities) / |N|

AVERAGE	0.3834	0.3185	0.3247	0.3857	0.2795	0.3080
MINIMUM	0.2000	0.1200	0.1400	0.2200	0.1200	0.1400
MAXIMUM	0.6500	0.5500	0.5500	0.7500	0.5500	0.5500

Prospective Research

- Need better lower bounds
 - Bigger underestimates for availability to locate fewer servers
- Relax Markovian assumption on total service times
 - Total service time = travel time to a node and back to home facility + on-scene service time.
 - BKK1 with zero-capacity queues
- Need stability for infinite capacity queues
 - Place queues at facilities for BKK1
- Prioritize customers
 - Customer assignment policy