Uses of Moments

1. The first four moments are routinely used
in statistical applications to describe the lo-
cation, spread, skewness, and heavy-tailedness
of a distribution (see Kendall’'s Advanced
Theory of Statistics — Stuart and Ord, 1994).

2. The moments uniquely define the under-
lying probability distribution when its mo-
ment generating function exists.

3. The quality of any approximating probabil-
ity distribution may be ascertained by com-
paring a large number of moments.

4. Higher order moments are often used to
study tail behaviour and asymptotic prop-
erties of a distribution.



The Duration of a Busy Period

Backlog

Time

Let B denote the duration of a busy period
with Laplace-Stieltjes transform (LST)
®p(s) = E(e™*P), Re(s) > 0.

Now consider an M/G/1 queue with arrival
rate A and service time random variable S hav-

ing LST ¢(s) and moments p;, = E(SF).

e Kleinrock, 1975, p.212:
Pp(s) = d(s+ A= Adp(s)) (1)

e Related Item — The delay cycle transform

(Takagi, 1991, pp.23-24):
Sp(s) = Pr(s+ A — APp(s))



Symbolic Derivation of Busy Period
Moments

We will consider 3 methods for doing this:

1. Takacs' explicit formula

2. Implicit differentiation and recursive evalu-
ation

3. Algorithm based on integer partitions



Method 1

Takacs’ (1963) explicit formula:

o~ (_1)r—1 or—1 3 .
B(B) = A {asr—l(s—x+x¢(s))}

s—0



Method 2

* Implemented symbolically by Takagi and
Sakamaki (1996)

Differentiate both sides of (1) repeatedly so
that the first few derivatives look like

L (s) = {1-2F()}¢™M (s + A — A p(s))

1 (s) = {1-205 ()12 (s + A — A®(s))
— 2 ()M (s + A — A p(s))

1 (s) = {1-205 ()12 (s + A — AP p(s))
— 3{1-2>P ()N ()P (s + A — AP (s))
— A F ()M (s + A — A p(s))



Method 2 (continued)

When r = 2, for example, the solution for
»{2)(s) is given by

@) (5) = L APE 26D (s + X = A0p()
1MW+ A= Ap(s)

By evaluating the above transform at s = O
and making the substitution

(1) . . 1)
b O)= —FE(B) = — ,
B (0) (B) 1 — Auq
one obtains
Ho

o) =B = 25



Some Remarks

Methods 1 and 2 both lend themselves readily
to symbolic computation, as:

(i) direct implementation is straightforward
(ii) pleasing in its simplicity

(iii) reflects the power of symbolic algebra

On the other hand, both methods are not ter-
ribly efficient and do not reflect the deeper el-
egant structure of the problem.

Intermediate-expression Swell (Kendall, 1998)

e the tendency for naive algorithms to gener-
ate huge expressions in a calculation where
the final result is concise



Method 3

* Implemented symbolically by Drekic and
Stafford (2002)

Consider differentiating a function of the form

f(s) = (goh)(s) = g(h(s))
Let:

® s;,55,... denote the components of s
o 9;,0:;,... denote the operators 6%,%;%,...

e h;, h;,... denote the quantities 9;h(s), 0;;h(s),...

o g = g (h(s))

Then:
0:f(s) = hig
9ijf(s) = hijgr + hihjgo
Oiikf(s) = hijrgr + hijhrg2 + hich;g2 + hjghig2 + hihjhigs



Proceeding in this fashion...

Oiyiginf(8) = D> 11 76| gpp) (2)

PEPy., bEp

where:
o V. ={i1,...,%}
e Py is the full partition of V;

e p = (b1]---|bx) is a particular partition of V. into k
blocks

e b is an arbitrary block of a partition
e |p| denotes the number of blocks in the partition p

Example: Let 21 = 1, 20 = 3, 213 = k. For the 3rd
derivative:

V3 — {Zajak}
Pv, = {(ijk), (ijlk), (ikl7), (7kli), (2]5|k) }



Consider the scalar case (i.e. i = j = k)

Then:
0;f(s) = hig
0iif(s) = higr + hihigo
= hiig1 + hgo
Diii f(s) hiiig1 + hiihig> + hihigo + hihigo + hihihiga

hiiigr + 3hihigs + higa

In the case of the 3rd derivative:
Vz — {4,%,1}
Py, — {(d1), (25]4), (42]2), (ad]%), (d]4|é) }
— {(ae5), (2g]e), (4]4]) }
= {{3},{2,1},{1,1,1}}

In other words, we're dealing with partitions of
the integer 3, denoted by Ps3.
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Therefore, equation (2) in the scalar case becomes

7)) => e [P | g7V (ns)) (3)

PEP, bep

where ¢, is the number of partitions in Py that have
block lengths given by the elements of p.

For the busy period LST (1), we set:
[ = &5

g=¢
h(s) =s+ X — Abp(s)

Then, equation (3) becomes

o5 () =Y S e [[] Goa = AR ()| ¢1P(s + A = Adp(s))

pEP, bep
(4)

where ¢; ; denotes the Kronecker delta.
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By evaluating (4) at s = 0, the following re-
cursive procedure for calculating E(B"), r > 2,
IS obtained:

(=1) 3 {cp [H (55,1 + (—1)b+1>\E[Bb])] (—1)pup}

1= Am pE{P,—{r}} bEp

It is this rule that we implement in Mathemat-
ica to compute moments of B. With this rule,
note that:

e NO derivative expression is ever generated
in the computation of E(B")

e all that is needed are the moments of the
service time distribution uz, the coefficients
cp, and the integer partitions Py.
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Table 1: Comparison of Execution Times (in Seconds)

r Method 1 Method 2 Method 3
2 0.031 0.016 0.001
4 0.109 0.094 0.047
6 1.27 0.609 0.203
8 74.6 2.72 0.718
10 4932 3.65 2.28
11 — 6.28 4.23
12 — 15.9 7.78
13 — 32.9 15.9
14 — 83.9 17.3
16 — 542 129
17 — 1437 346
18 — — 034
19 — — 2712
20 — — 7177
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