

Smectic liquid crystal films

smectic = soapy

Smectics form robust submicron thick suspended films which are an integer number of smectic layers thick. They are Newtonian for flows in the plane of the film and resist thickness change.

side view

Each layer is 3.16nm thick.

Molecular orientation remains perpendicular to the layers in the smectic A phase.

Mechanism of electroconvection

Convection is driven by an unstable surface charge distribution on the two free surfaces

Apply a DC voltage.

Drive a current.

Produce surface charge

Surface forces appear that can drive convection

Mechanism of electroconvection

continued

Current density $\vec{\mathbf{J}} = \sigma \vec{\mathbf{E}}_{inside}$

$$ec{\mathbf{E}}_{outside} = -\nabla \psi$$
 with $\nabla^2 \psi = 0$ outside the film.

Boundary conditions require

$$ec{\mathbf{E}}_{||} = ec{\mathbf{E}}_{inside}$$

$$q = \epsilon_o E_{\perp} = -\epsilon_o \partial_{\perp} \psi$$
$$q\vec{\mathbf{E}}_{||} = -\epsilon_o q \nabla_{||} \psi$$

Convection in a rectangular film suspended between two wires

Uniform colour indicates uniform thickness

Flow visualized by backlit particles

Annular electrodes

radius ratio
$$\alpha = r_i/r_o$$

Naturally periodic boundary conditions

There is a unique current path through the film

Annular electrodes

radius ratio
$$\alpha = r_i/r_o$$

Base state charge density can be calculated analytically using a Green function.

$$q(r) = \frac{2}{\ln \alpha} \left[\frac{1}{r} \, _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; \frac{r_o^2}{r^2}\right) \right]$$

$$-\frac{1}{r_i} _2F_1\left(\frac{1}{2}, \frac{1}{2}; 1; \frac{r^2}{r_i^2}\right)$$

Base state (no convection) charge density

q becomes antisymmetric about midline as lpha o 1

Convection in a nearly uniform annular film

Shape distortion is a video format artifact!

Annular electrodes with superposed Couette shear

Purely azimuthal flow does not change electrical base state

Convection in a nonuniform annular film with shear

Shape distortion is a video format artifact!

Linear stability analysis

Closely analogous to radial Rayleigh-Bénard. Treat fluid as 2D, potential as 3D.

$$\tilde{\rho} \left[\frac{\partial \vec{\mathbf{u}}}{\partial t} + (\vec{\mathbf{u}} \cdot \nabla_{||}) \vec{\mathbf{u}} \right] = -\nabla_{||} P + \tilde{\eta} \nabla_{||}^2 \vec{\mathbf{u}} + q \vec{\mathbf{E}}$$

$$\frac{\partial q}{\partial t} = -\nabla_{||} \cdot (q\vec{\mathbf{u}} + \tilde{\sigma}\vec{\mathbf{E}})$$

$$\nabla^2 \psi = 0$$

$$q = -2\epsilon_0 \partial_\perp \psi \Big|_{z=0^+}$$

Dimensionless numbers

$$\mathcal{R} = \frac{\epsilon_0^2 V^2}{\tilde{\sigma} \tilde{\eta}} = \frac{\epsilon_0^2 V^2}{\sigma \eta s^2}$$

$$\mathcal{P} = \frac{\epsilon_0 \tilde{\eta}}{\tilde{\rho} \tilde{\sigma} d} = \frac{\epsilon_0 \eta}{\rho \sigma s d}$$

fields $\sim e^{im\theta}$

m = azimuthal mode number

 $\mathcal{R}_c \sim 100$

Critical mode number for zero shear vs. radius ratio

Critical Rayleigh number for zero shear vs. radius ratio

Under shear, onset is suppressed to higher R

Reynolds number

$$\mathcal{R}e = \rho\omega r_i(r_o - r_i)/\eta$$

Most unstable linear modes travel azimuthally under shear.

Linear stability analysis

Most unstable linear modes, with vortices visualized

Measure the current through the film.

Nusselt number

$$\mathcal{N}u = \frac{I_{total}}{I_{cond}}$$

reduced Nusselt number

$$n = \mathcal{N}u - 1$$

Experiment

Suppression of onset by shear agrees with linear theory

Experiment

Nonlinear regime

Amplitude equation formulation gives a complex Landau equation

$$\epsilon = \left[\frac{\mathcal{R}}{\mathcal{R}_c}\right] - 1$$
 Fields $\sim A_m e^{im\theta}$

$$\tau(\partial_t - ia_{Im})A_m
= \epsilon(1 + ic_0)A_m - g(1 + ic_2)|A_m|^2 A_m
+ h(1 + ic_3)|A_m|^4 A_m - \dots$$

$$A_m(t) = A(t)e^{i\Phi(t)}$$

$$\tau \partial_t A = \epsilon A - gA^3 - hA^5 - \dots \qquad \text{Real part}$$

$$\tau(\partial_t \Phi - a_{Im}) = \epsilon c_0 - g c_2 A^2 + \dots$$
 Imaginary part

Nonlinear regime

We can use Nusselt number measurements to probe the magnitude of the complex amplitude.

time independent real amplitude equation

$$\tau \partial_t A = \epsilon A - gA^3 - hA^5 = 0$$

A can be scaled so that $N-1=n=A^2$

Fit n vs. ϵ to extract g and h > 0

$$g > 0$$
 supercritical

$$g = 0$$

g < 0

tricritical

subcritical

For small Reynolds number, we find

g > 0

supercritical bifurcations

For larger Reynolds number, we find

g < 0

subcritical bifurcations

The cubic coefficient also depends on α, \mathcal{P}

Bifurcation also becomes subcritical for Re=0 and $small \alpha$

$$g=2.84$$
 for
$$\alpha=1,$$

$$\mathcal{P}\to\infty$$

Secondary bifurcations

Consist of mode hopping transitions

 $m \rightarrow m \pm 1$

Tree of *m* states and subcritical bifurcations

 ω

Secondary bifurcations

Secondary bifurcations

We observe discontinuities in g and h as codimension 2 points are passed

Conclusion

- Smectic electroconvection with shear is a rich playground for weakly nonlinear analysis.
- Large parameter space has not been fully mapped experimentally.
- Full Navier Stokes simulations should be feasible.

You are invited to visit the nonlinear physics group lab!

Thursday at 1:00pm Friday at 1:00pm

or anytime by appointment, smorris@physics.utoronto.ca

60 St. George St., Room 090 (north basement). Go out the back door of Fields and past the big smokestack...

www.physics.utoronto.ca/nonlinear