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Smectic liquid crystal films

smectic = soapy

Smectics form robust submicron thick suspended films which are 
an integer number of smectic layers thick.  They are Newtonian for 
flows in the plane of the film and resist thickness change.

Each layer is 
3.16nm thick.

Molecular orientation remains 
perpendicular to the layers in 

the smectic A phase.

side view



Mechanism of 
electroconvection

Convection is driven by an unstable surface 
charge distribution on the two free surfaces

+ -
Apply a DC voltage.
Drive a current.

+++ +  +   +
+++ +  +   + -   -  - ---

-   -  - ---

Produce surface charge

Surface forces appear
that can drive convection



Surface force q!E|| = −εoq∇||ψ

Mechanism of 
electroconvection

continued

!Einside

!J = σ!EinsideCurrent density

!Eoutside

!Eoutside = −∇ψ

∇2ψ = 0with
outside the film.!E||

!E⊥

!E|| = !Einside

Boundary conditions require+ + + + + + + + + + +
q

Surface charge q = εoE⊥ = −εo∂⊥ψ



1 mm

Uniform colour indicates uniform thickness

Convection in a rectangular film 
suspended between two wires

Flow visualized by backlit particles



Annular electrodes
radius ratio α = ri/ro

ri

ro

There is a unique current 
path through the film

Naturally periodic 
boundary conditions



Annular electrodes
radius ratio α = ri/ro

Base state charge density can be calculated 
analytically using a Green function.

q(r) = 2
ln α
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Base state (no convection) charge density

Inner 
electrode

at +V

Outer 
electrode

at ground

+

-

becomes antisymmetric about midline asq α → 1



Shape distortion is a video format artifact!

Convection in a nearly uniform annular film



Annular electrodes with 
superposed Couette shear

motor

slip ringA

Purely azimuthal flow does not 
change electrical base state

ω



Convection in a nonuniform 
annular film with shear

Shape distortion is a video format artifact!



Linear stability analysis

Closely analogous to radial Rayleigh-Bénard.
Treat fluid as 2D,  potential as 3D.

∇2ψ = 0

q = −2ε0∂⊥ψ
∣∣∣
z=0+

ρ̃

[
∂"u
∂t + ("u ·∇||)"u

]
= −∇||P + η̃∇2

||"u + q"E

∂q
∂t = −∇|| · (q!u + σ̃!E)

R = ε20V 2

σ̃η̃ = ε20V 2

σηs2

P = ε0η̃
ρ̃σ̃d = ε0η

ρσsd

Dimensionless
numbers



Linear stability analysis

fields ∼ eimθ

Neutral 
stability 

boundary
for zero 
shear

1

m = azimuthal 
mode number

mc

Rc ∼ 100



Linear stability analysis

Critical mode 
number

for zero shear
vs. radius ratio



Linear stability analysis

Critical Rayleigh 
number

for zero shear
vs. radius ratio

Codimension 2
points



Linear stability analysis

Under shear, 
onset is 

suppressed to 
higher R

Re =
ρωri(ro − ri)/η

α = 0.8
P = 10

Reynolds number
Re = 0

Re = 0.25

Re = 0.75



Linear stability analysis

Most unstable 
linear modes 

travel azimuthally 
under shear.

Codimension 2
points



Linear stability analysis

Most unstable linear 
modes, with 

vortices visualized



Experiment

Measure the current 
through the film.

Nusselt number

Nu = Itotal
Icond

reduced
Nusselt number

n = Nu − 1

Ohmic part = Icond

Onset of
convection at

Vc



Experiment

Suppression of 
onset by shear

agrees with 
linear theory

ε̃ (Re) =
(

Rc(Re)
Rc(0)

)
− 1

=
(

Vc(Re)
Vc(0)

)2

− 1



Nonlinear regime
Amplitude equation formulation gives 

a complex Landau equation

ε =
[

R
Rc

]
− 1

τ(∂t − iaIm)Am

= ε(1 + ic0)Am − g(1 + ic2)|Am|2Am

+ h(1 + ic3)|Am|4Am − ...

Fields ∼ Ameimθ

Am(t) = A(t)eiΦ(t)

τ∂tA = εA − gA3 − hA5 − ...

τ(∂tΦ − aIm) = εc0 − gc2A2 + ...

Real part

Imaginary part



Nonlinear regime

τ∂tA = εA − gA3 − hA5 = 0

We can use Nusselt number 
measurements to probe the 

magnitude of the complex amplitude.

time independent real amplitude equation

A can be scaled so that  N − 1 = n = A2

g > 0 g = 0 g < 0
supercritical tricritical subcritical

Fit     vs.    to extract    and       n ε g h > 0



Nonlinear regime

For small 
Reynolds number, 

we find 

g > 0
supercritical
bifurcations

α = 0.64



Nonlinear regime

For larger 
Reynolds number, 

we find 

subcritical
bifurcations

g < 0



Nonlinear regime

g > 0
g = 0

g < 0α,P

The cubic 
coefficient also 

depends on



Nonlinear regime

Bifurcation 
also becomes 
subcritical for 

Re=0 and 
small    α

g = 2.84
for α = 1,

P → ∞



Secondary 
bifurcations

Consist of 
mode hopping 

transitions 

m = 8

m = 7

m = 7

m = 7

m = 7

m = 6

m = 6

m = 6

m → m ± 1



Secondary bifurcations

Tree of m 
states and 
subcritical 

bifurcations



Secondary 
bifurcations

m = 8 m = 7 m = 6

We observe 
discontinuities 

in g and h
as codimension 2 
points are passed



Smectic electroconvection with 
shear is a rich playground for 
weakly nonlinear analysis.

Large parameter space has not 
been fully mapped experimentally.

Full Navier Stokes simulations 
should be feasible.

Conclusion



You are invited to visit the 
nonlinear physics group lab!

www.physics.utoronto.ca/nonlinear

60 St. George St., Room 090 
(north basement).  Go out the 
back door of Fields and past the 
big smokestack...

Thursday at 1:00pm
Friday at 1:00pm

or anytime by appointment,
smorris@physics.utoronto.ca


