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Canard Solutions

e Slow/fast systems often have strongly attracting, locally

invariant slow manifolds

e Slow manifolds sometimes end abruptly and trajectories

must follow fast directions.

e Canards are exceptional trajectories which cross over to
the repelling slow manifold and continue moving on the

slow scale.

e Some very interesting dynamical phenomena, like mixed
mode oscillatins or localization may arise due to the

presence of canards.



Mixed Mode Oscillations

In singular perturbations one encounters two basic types of
periodic solutions: small oscillations and relaxation
oscillations. Mixed mode oscillations are a oscillatory
solutions combining both types.



Example equation
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ET = —Y + §x2 — §x3

Y=z —z

i=ce(p—2z+ ().
e The presence and type of mixed mode oscillations
depends on the function ¢.
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Singular Perturbation Theory

ex = f(z,y) ' = f(z,y)
y=g(z,y) rcR" yeR™ y' =eg(z,y),

Oth order approximations are given by:

flz,y) =0 ' = f(z,y)
y = g(z,y) y' =0,

e The set So = {(z,y) : f(z,y) =0} is called the reduced
manifold.

e Sy is the phase space for the reduced problem and the set
of equlibria for the layer problem.



Fenichel Theorem
z' = f(z,y)

y =eg(z,y).

(1)

Theorem (Fenichel) Suppose S, is an open subset of Sy
such that for every (z,y) € Sy the matrix D, f has no
eigenvalues on the imaginary axis. Then, for € > 0, there
exists a locally invariant manifold for (1) S. close to Sy and
the flow on S; is close to the flow of the reduced equation

on S().




Non-hyperbolic points

Interesting dynamics involving jumps between different
locally invariant slow manifolds is related to the loss of
normal hyperbolicity of Sy. Simplest example: fold. The

following equations give an example:
ex = —y +

ey =g(z,y),  ¢(0,0) <O0.
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Fold in Systems with Two Slow Variables
= —y+ 2’
Yy =egi(z,y, 2)
2 =ega(z,y, 2)
e So={(z,y,2) : y=x?}is a parabolic cylinder
e Fold line F = {0,0,2) : z is arbitrary }

e reduced equation can be obtained in variables (z, z) by

setting y = x*

2ex = gl(waya Z)
z = g2(33,y, Z)

e Fold line F = {x = 0} corresponds to the set of
singularities of the reduced equation.



Simple fold
22 = g1(x,y, 2)
¢ = g2(x,y,2)
Consider pg = (0,0, z9) € F. If g1(po) # 0 then pg is like a simple fold point

in a system with one slow variable.

Folded singularities correspond to the case of g1(pg) = 0.



Folded node
e = —y + z°
Yy=x—2z
Z2=(u—x—2), p > 0.
Reduced equation:
200 = x — 2
z=(u—x—2).
We desingularize (rescale time by —2z):
T =—2ux(x — 2)
z2="2x(p—z—2),
or, after cancelation:
rT=2z—

z2==2x(p—x—z2),
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Folded node cont.
T=2—x
z2="2x(p—x—2),
e Away from the fold line {x = 0} the trajectories of the

reduced and desingularized system are equal, up to time
parametrization. Time direction has to be reversed for

x > 0.
e (0,0) is an equilibrium of node type.
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Canard solutions

e By Fenichel theory away from F there exist two dimensional slow manifolds S,

and S,. Canard solutions are solutions that pass from S, to S,.

e Near folded node there are two primary canards corresponding to principal

directions. We call them weak canard and strong canard.

e Let 1 be the ratio of the weak to the strong eigenvalue of the desingularized
system and let m be such that m —1 < u < m. For each 1 < k < m — 1 there exists

a secondary canard which winds k£ times around the weak canard.




Dynamics near Folded Node

e Trajectories on S, to the left of the strong canard (in the sense of the figure) are
attracted to the weak canard. They rotate about the weak canard as they pass
near the fold. They may leave the neighborhood either through a a relaxation

mechanism or following one of the canards.

e Trajectories right of the strong canard follow the relaxation mechanism.




Global problem

Mechanism of complicated dynamics: The trajectries
following the relaxation route come back to S,— to the left
of the strong canard and subsequently converge to the weak

canard.




Folded saddle-node (easier?!)
e = —y + z°
Yy=T—2z
Z2=(u—x—2), u = 0.

Phase portraits for reduced system:
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Dynamics near folded saddle-node There is no weak
canard. There are infinitely many secondary canards, all
very close to the strong canard. Most of the trajectories

spiral as they pass near the fold and exit either along the

strong canard or follow the relaxation mechanism.




Section of the flow

We define our return map 7 on the hyperplane

A ={(0,y,2), (y,2) € R*}.

e Although A may fail to be a section for some trajectories it is still the
best candidate.



Return map
Notation:

e |’ is the strong canard
o', =1T'NS,
e [', is the projection of ', onto S, .




Return map cont.

Proposition The part of the attractor outside of a small neighborhood of

the folded saddle node is close the union of two curves [; U [y, where:
e [; is the orthogonal projection along x of I', onto A,

e [, is the projection by the flow of 'y onto A.




The curve W

Let W be the set of points in A whose forward trajectories end up in S,
after one passage near the fold.

e I divides A into points whose trajectories jump to S, before returning
to A and trajectories that remain close to S,_ U S, and then jump to A.

e Let 'y =I'N S,_ and let I3 be the orthogonal projection of I', onto A.
Outside a small neighborhood of the fold W is close to I3




Return map - scenario 1

S

s = arclength of the attractor



Return map - scenario 2




Conclusions

e Canard induced mixed mode oscillations can happen in a large parameter
regime (Ap = 0O(1))

e In the interval of mixed mode oscillations there are infinitely many
canard explosions

e Geometric approach is well suited for the analysis of this problem.



