Coupled Cell Systems

Martin Golubitsky
 Department of Mathematics University of Houston

Ian Stewart, University of Warwick
Matt Nicol, University of Houston
Marcus Pivato, Trent University
Andrew Török, University of Houston
Yunjiao Wang, University of Houston

Overview

Coupled cell system: discrete space, continuous time system Has information that cannot be understood by phase space theory alone

1) symmetry
synchrony, phase shifts, multirhythms
2) groupoids
input sets, balanced relations, quotient networks
3) new states
different dynamics on different cells
Primary Question: What aspects of the dynamics of coupled cell systems are due to network architecture?

Part I: Symmetry and Synchrony

- Coupled cell systems described by graph

$$
\begin{aligned}
& \dot{x}_{i}=f\left(x_{i}, x_{i-1}, x_{i+1}\right) \\
& f(x, y, z)=f(x, z, y)
\end{aligned}
$$

Part I: Symmetry and Synchrony

- Coupled cell systems described by graph

$$
\begin{gathered}
\dot{x}_{i}=f\left(x_{i}, x_{i-1}, x_{i+1}\right) \\
f(x, y, z)=f(x, z, y)
\end{gathered}
$$

- Symmetries are permutations of cells $\left(\mathrm{D}_{4}\right)$

Part I: Symmetry and Synchrony

- Coupled cell systems described by graph

$$
\begin{aligned}
& \dot{x}_{i}=f\left(x_{i}, x_{i-1}, x_{i+1}\right) \\
& f(x, y, z)=f(x, z, y)
\end{aligned}
$$

- Symmetries are permutations of cells (D_{4})
- Fixed-point subspaces are synchrony subspaces

$$
\operatorname{Fix}(\Sigma)=\{x: \sigma(x)=x \quad \forall \sigma \in \Sigma\}
$$

Part I: Symmetry and Synchrony

- Coupled cell systems described by graph

$$
\begin{aligned}
& \dot{x}_{i}=f\left(x_{i}, x_{i-1}, x_{i+1}\right) \\
& f(x, y, z)=f(x, z, y)
\end{aligned}
$$

- Symmetries are permutations of cells (D_{4})
- Fixed-point subspaces are synchrony subspaces

$$
\operatorname{Fix}(\Sigma)=\{x: \sigma(x)=x \quad \forall \sigma \in \Sigma\}
$$

- Question: Are all synchrony spaces fixed-point spaces?

Answer: No

$$
\begin{aligned}
\dot{x}_{1} & =g\left(x_{1}, x_{3}, x_{2}\right) \\
\dot{x}_{2} & =g\left(x_{1}, x_{3}, x_{1}\right) \\
\dot{x}_{3} & =g\left(x_{1}, x_{4}, x_{2}\right) \\
\dot{x}_{4} & =g\left(x_{1}, x_{1}, x_{3}\right)
\end{aligned}
$$

Spatio-Temporal Symmetries

Let $x(t)$ be a time-periodic solution

- $K=\{\gamma \in \Gamma: \gamma x(t)=x(t)\} \quad$ space symmetries
- $H=\{\gamma \in \Gamma: \gamma\{x(t)\}=\{x(t)\}\}$ spatiotemporal symmetries

Facts:

- $\gamma \in H \Longrightarrow \theta \in \mathbf{S}^{1} \quad$ such that $\quad \gamma x(t)=x(t+\theta)$
- H / K is cyclic

Question:

How do spatiotemporal symmetries manifest themselves in coupled cell systems?

A Three-Cell System

$$
\text { (1) } \cdots=2 \cdots(3)
$$

$$
\begin{aligned}
\dot{x}_{1} & =f\left(x_{1}, x_{2}\right) \\
\dot{x}_{2} & =g\left(x_{2}, x_{1}, x_{3}\right) \quad g\left(x_{2}, x_{1}, x_{3}\right)=g\left(x_{2}, x_{3}, x_{1}\right) \\
\dot{x}_{3} & =f\left(x_{3}, x_{2}\right)
\end{aligned}
$$

A Three-Cell System

$$
\text { (1) } \cdots=2 \div(3)
$$

$$
\begin{aligned}
\dot{x}_{1} & =f\left(x_{1}, x_{2}\right) \\
\dot{x}_{2} & =g\left(x_{2}, x_{1}, x_{3}\right) \quad g\left(x_{2}, x_{1}, x_{3}\right)=g\left(x_{2}, x_{3}, x_{1}\right) \\
\dot{x}_{3} & =f\left(x_{3}, x_{2}\right)
\end{aligned}
$$

- Symmetry: $\sigma\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}, x_{2}, x_{1}\right)$
$\operatorname{Fix}(\sigma)=\left\{x_{1}=x_{3}\right\}$ is flow-invariant. Robust synchrony

A Three-Cell System

$$
\begin{aligned}
\dot{x}_{1} & =f\left(x_{1}, x_{2}\right) \\
\dot{x}_{2} & =g\left(x_{2}, x_{1}, x_{3}\right) \quad g\left(x_{2}, x_{1}, x_{3}\right)=g\left(x_{2}, x_{3}, x_{1}\right) \\
\dot{x}_{3} & =f\left(x_{3}, x_{2}\right)
\end{aligned}
$$

- Symmetry: $\sigma\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{3}, x_{2}, x_{1}\right)$
$\operatorname{Fix}(\sigma)=\left\{x_{1}=x_{3}\right\}$ is flow-invariant. Robust synchrony
- Out-of-phase periodic solutions ($H=\mathrm{Z}_{2}(\sigma), K=\mathbf{1}$):

$$
\begin{gathered}
\sigma X(t)=X\left(t+\frac{1}{2}\right) \\
x_{3}(t)=x_{1}\left(t+\frac{1}{2}\right) \quad \text { and } \quad x_{2}(t)=x_{2}\left(t+\frac{1}{2}\right)
\end{gathered}
$$

A Three-Cell System (2)

Polyrhythms

- Symmetry group of five-cell system is $\mathrm{Z}_{3} \times \mathrm{Z}_{2} \cong \mathrm{Z}_{6}$
- Periodic solutions with $(H, K)=\left(\mathrm{Z}_{6}, 1\right)$ can exist
- Let $\sigma=(\rho, \tau)$ be generator of $\mathbf{Z}_{3} \times \mathbf{Z}_{2}$.
($\left.\sigma^{2}, 1 / 3\right) \Longrightarrow 3$-cell ring exhibits rotating wave ($\sigma^{3}, 1 / 2$) $\Longrightarrow 2$-cell ring is out-of-phase ($\sigma, 1 / 6) \Longrightarrow$ triple 2-cell freq = double 3-cell freq

Polyrhythms (2)

Summary on Symmetry

Permutation symmetries of coupled cell systems lead to

- synchrony
- discrete rotating waves
- multifrequency motions

Part II: Coupled Cell Theory

- input sets and input isomorphisms
- network architecture and symmetry groupoids
- balanced colorings and synchrony subspaces
- quotient networks (discussed with examples)

Main Results

1) synchrony subspace iff balanced coloring
2) restriction to synchrony subspace is a coupled cell system - the quotient network
3) every quotient cell system lifts

Asymmetric Three-Cell Network

$$
\begin{aligned}
\dot{x}_{1} & =f\left(x_{1}, x_{2}, x_{3}\right) \\
\dot{x}_{2} & =f\left(x_{2}, x_{1}, x_{3}\right) \\
\dot{x}_{3} & =g\left(x_{3}, x_{1}\right)
\end{aligned}
$$

- Robust synchrony exists in networks without symmetry
- Polydiagonal $Y=\left\{x: x_{1}=x_{2}\right\}$ is flow-invariant

Restrict equations \dot{x}_{1}, \dot{x}_{2} to Y

$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{1}, x_{3}\right) \\
& \dot{x}_{2}=f\left(x_{1}, x_{1}, x_{3}\right)
\end{aligned}
$$

- Cells 1 and 2 are identical within the network

Input Sets

- Input set of cell j : Cell j \& cells i that connect to j
- Key idea: cells 1, 2 have isomorphic input sets

Coupled Cell Network Definition

(a) A set $\mathcal{C}=\{1, \ldots, N\}$ of cells
(b) An equivalence relation \sim_{C} on cells in \mathcal{C}
(c) Each node c has a finite set of input terminals $I(c)$. Each $i \in I(c)$ corresponds to an arrow $(\tau(i), i)$ beginning at $\tau(i)$ and ending at $i . \mathcal{E}=$ set of arrows
(d) An equivalence relation \sim_{E} on arrows in \mathcal{E}
(e) Equivalent arrows have equivalent tails and heads

A coupled cell network is represented by a graph

- For each class of cells choose node symbol $\bigcirc, \square, \triangle$
- For each class of arrows choose arrow symbol $\rightarrow, \Rightarrow, \rightsquigarrow$

Symmetry Groupoid

- Cells c, d are input equivalent \sim_{I} if there is a bijection

$$
\beta: I(c) \rightarrow I(d)
$$

such that $(i, c) \sim_{E}(\beta(i), d)$ for all $i \in I(c)$

Symmetry Groupoid

- Cells c, d are input equivalent \sim_{I} if there is a bijection

$$
\beta: I(c) \rightarrow I(d)
$$

such that $(i, c) \sim_{E}(\beta(i), d)$ for all $i \in I(c)$

- Any such bijection β is an input isomorphism $B(c, d)=$ set of input isomorphisms from cell c to cell d

Symmetry Groupoid

- Cells c, d are input equivalent \sim_{I} if there is a bijection

$$
\beta: I(c) \rightarrow I(d)
$$

such that $(i, c) \sim_{E}(\beta(i), d)$ for all $i \in I(c)$

- Any such bijection β is an input isomorphism $B(c, d)=$ set of input isomorphisms from cell c to cell d
- The symmetry groupoid of a coupled cell graph G is

$$
\mathcal{B}_{G}=\bigcup_{c, d \in \mathcal{C}} B(c, d)
$$

Symmetry Groupoid

- Cells c, d are input equivalent \sim_{I} if there is a bijection

$$
\beta: I(c) \rightarrow I(d)
$$

such that $(i, c) \sim_{E}(\beta(i), d)$ for all $i \in I(c)$

- Any such bijection β is an input isomorphism $B(c, d)=$ set of input isomorphisms from cell c to cell d
- The symmetry groupoid of a coupled cell graph G is

$$
\mathcal{B}_{G}=\bigcup_{c, d \in \mathcal{C}} B(c, d)
$$

- Groupoid is like group; but products not always defined

Symmetry Groupoid

- Cells c, d are input equivalent \sim_{I} if there is a bijection

$$
\beta: I(c) \rightarrow I(d)
$$

such that $(i, c) \sim_{E}(\beta(i), d)$ for all $i \in I(c)$

- Any such bijection β is an input isomorphism $B(c, d)=$ set of input isomorphisms from cell c to cell d
- The symmetry groupoid of a coupled cell graph G is

$$
\mathcal{B}_{G}=\bigcup_{c, d \in \mathcal{C}} B(c, d)
$$

- Groupoid is like group; but products not always defined
- Coupled cell systems: ODEs that commute with \mathcal{B}_{G}

Patterns of Synchrony

- Color cells in \mathcal{C}

$$
\Delta=\left\{x \in P: x_{c}=x_{d} \text { whenever } c \text { and } d \text { have same color }\right\}
$$

Patterns of Synchrony

- Color cells in \mathcal{C}

$$
\Delta=\left\{x \in P: x_{c}=x_{d} \text { whenever } c \text { and } d \text { have same color }\right\}
$$

- Coloring is pattern of synchrony if Δ is always flow invariant

Patterns of Synchrony

- Color cells in \mathcal{C}

$$
\Delta=\left\{x \in P: x_{c}=x_{d} \text { whenever } c \text { and } d \text { have same color }\right\}
$$

- Coloring is pattern of synchrony if Δ is always flow invariant
- Coloring is balanced if every pair of cells with same color has a color preserving input isomorphism

Patterns of Synchrony

- Color cells in \mathcal{C}

$$
\Delta=\left\{x \in P: x_{c}=x_{d} \text { whenever } c \text { and } d \text { have same color }\right\}
$$

- Coloring is pattern of synchrony if Δ is always flow invariant
- Coloring is balanced if every pair of cells with same color has a color preserving input isomorphism
- Thm: Coloring is pattern of synchrony iff coloring is balanced

Part III: Examples

- Lattice dynamical systems
- Classify balanced two colorings up to symmetry
- Balanced two colorings occur in codimension one bifurcations (use quotient networks)
- Feed-forward network
- Amplitude enhancement in Hopf bifurcation
- Different dynamics in different cells

Lattice Dynamical Systems

- Consider square lattice with nearest neighbor coupling
- Form a two-color balanced relation

- Each black cell connected to two black and two white Each white cell connected to two black and two white

Lattice Dynamical Systems (2)

- On Black/White diagonal interchange black and white

Result is balanced

Lattice Dynamical Systems (2)

- On Black/White diagonal interchange black and white

Result is balanced

- A continuum of different patterns of synchrony exist

Lattice Dynamical Systems (3)

Yunjiao Wang

There are eight isolated balanced two-colorings on square lattice with nearest neighbor coupling

Lattice Dynamical Systems (4)

There are two infinite families of balanced two-colorings generated by interchanging black and white along diagonals on which black and white cells alternate

Up to symmetry, these are the two-color patterns of synchrony

Quotient Cell Systems

Given $\mathcal{G}=\left(\mathcal{C}, \sim_{C}, \mathcal{E}, \sim_{E}\right)$ and balanced coloring \bowtie
Define: quotient network $\mathcal{G}_{\bowtie}=\left(\mathcal{C}_{\bowtie}, \sim_{\mathcal{C}_{\bowtie}}, \mathcal{E}_{\bowtie}, \sim_{\mathcal{E}_{\bowtie}}\right)$ by
(a) $\mathcal{C}_{\bowtie}=\{\bar{c}: c \in \mathcal{C}\}=\mathcal{C} / \bowtie$
(b) Define $\bar{c} \sim_{C_{\bowtie}} \bar{d} \Longleftrightarrow c \sim_{C} d$
(c) Arrows in quotient are projection of arrows in original network $\quad \mathcal{E}_{\bowtie}=\{(\overline{\tau(i)}, i):(\tau(i), i) \in \mathcal{E}\}$
(d) Quotient arrows are $\sim_{\mathcal{E}_{\bowtie}}$ when original arrows are \sim_{E}

Thm: \mathcal{G}-admissible ODE restricted to Δ_{\bowtie} is \mathcal{G}_{\bowtie}-admissible
Every \mathcal{G}_{\bowtie}-admissible ODE on Δ_{\bowtie} lifts to \mathcal{G}-admissible ODE

Two Color Quotient Networks

- Balanced two coloring has two-cell quotient

Two Color Quotient Networks

- Balanced two coloring has two-cell quotient
- Claim: Each balanced two coloring of square lattice leads to equilibria in codimension one bifurcations

Homogeneous Two-Cell Networks

$$
\begin{aligned}
& \dot{x}_{1}=f(x_{1}, \underbrace{\overline{x_{1}, \ldots, x_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{m_{1}}}_{k_{1}}) \\
& \dot{x}_{2}=f(x_{2}, \underbrace{\overline{x_{2}, \ldots, x_{2}}, \underbrace{x_{1}, \ldots, x_{1}}_{m_{2}}}_{k_{2}})
\end{aligned}
$$

$$
x_{1}=x_{2} \quad \text { is flow-invariant }
$$

- Jacobian $=\left[\begin{array}{cc}\alpha+k_{1} \beta & m_{1} \beta \\ m_{2} \beta & \alpha+k_{2} \beta\end{array}\right]$ where
$\alpha=$ linear internal and $\beta=$ linear coupling

Homogeneous Two-Cell Networks

$$
\begin{aligned}
& \dot{x}_{1}=f(x_{1}, \overline{\underbrace{x_{1}, \ldots, x_{1}}_{k_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{m_{1}}}) \\
& \dot{x}_{2}=f(x_{2}, \underbrace{\overline{x_{2}, \ldots, x_{2}}, \underbrace{x_{1}, \ldots, x_{1}}_{m_{2}}}_{k_{2}})
\end{aligned}
$$

$$
x_{1}=x_{2} \quad \text { is flow-invariant }
$$

- Jacobian $=\left[\begin{array}{cc}\alpha+k_{1} \beta & m_{1} \beta \\ m_{2} \beta & \alpha+k_{2} \beta\end{array}\right]$ where $\alpha=$ linear internal and $\beta=$ linear coupling
- Eigenvalues are $\alpha+\ell \beta((1,1))$ and $\alpha+\left(k_{1}+k_{2}-\ell\right) \beta$

Homogeneous Two-Cell Networks

$$
\begin{aligned}
& \dot{x}_{1}=f(x_{1}, \overline{\underbrace{x_{1}, \ldots, x_{1}}_{k_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{m_{1}}}) \\
& \dot{x}_{2}=f(x_{2}, \underbrace{\overline{x_{2}, \ldots, x_{2}}, \underbrace{x_{1}, \ldots, x_{1}}_{m_{2}}}_{k_{2}})
\end{aligned}
$$

$x_{1}=x_{2} \quad$ is flow-invariant

- Jacobian $=\left[\begin{array}{cc}\alpha+k_{1} \beta & m_{1} \beta \\ m_{2} \beta & \alpha+k_{2} \beta\end{array}\right]$ where $\alpha=$ linear internal and $\beta=$ linear coupling
- Eigenvalues are $\alpha+\ell \beta((1,1))$ and $\alpha+\left(k_{1}+k_{2}-\ell\right) \beta$
- Vary β : codimension 1 synchrony-breaking bifurcation

Three-Cell Feed-Forward Network

Three-Cell Feed-Forward Network

$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{1}\right) \\
& \dot{x}_{2}=f\left(x_{2}, x_{1}\right) \\
& \dot{x}_{3}=f\left(x_{3}, x_{2}\right)
\end{aligned} \quad J=\left[\begin{array}{ccc}
\alpha+\beta & 0 & 0 \\
\beta & \alpha & 0 \\
0 & \beta & \alpha
\end{array}\right]
$$

- Network supports solution by Hopf bifurcation where $x_{1}(t)$ equilibrium $\quad x_{2}(t), x_{3}(t)$ time periodic

Three-Cell Feed-Forward Network

$$
\begin{aligned}
& \dot{x}_{1}=f\left(x_{1}, x_{1}\right) \\
& \dot{x}_{2}=f\left(x_{2}, x_{1}\right) \\
& \dot{x}_{3}=f\left(x_{3}, x_{2}\right)
\end{aligned} \quad J=\left[\begin{array}{ccc}
\alpha+\beta & 0 & 0 \\
\beta & \alpha & 0 \\
0 & \beta & \alpha
\end{array}\right]
$$

- Network supports solution by Hopf bifurcation where $x_{1}(t)$ equilibrium $\quad x_{2}(t), x_{3}(t)$ time periodic

- $x_{2}(t) \approx \lambda^{1 / 2} \quad x_{3}(t) \approx \lambda^{1 / 6}$

Three-Cell Feed-Forward Network (2)

- Network supports solution where
$x_{1}(t)$ equilibrium, $x_{2}(t)$ time periodic, $x_{3}(t)$ quasiperiodic

Something to think about

- In a far away land

Something to think about

- In a far away land
- In a far away corner

Something to think about

- In a far away land
- In a far away corner
- Near a big island (Hook Island)

Something to think about

- In a far away land
- In a far away corner
- Near a big island (Hook Island)
- Near a small beach (Stonehaven)

Something to think about

- In a far away land
- In a far away corner
- Near a big island (Hook Island)
- Near a small beach (Stonehaven)
- Is a beautiful small island

