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Overview

Coupled cell system: discrete space, continuous time system
Has information that cannot be understood by phase space theory alone

1) symmetry

synchrony, phase shifts, multirhythms

2) groupoids

input sets, balanced relations, quotient networks

3) new states

different dynamics on different cells

Primary Question: What aspects of the dynamics of coupled cell
systems are due to network architecture?

. – p.2/26



Part I: Symmetry and Synchrony
Coupled cell systems described by graph

1 2

3 4

ẋi = f(xi, xi−1, xi+1)

f(x, y, z) = f(x, z, y)

Symmetries are permutations of cells (D4)

Fixed-point subspaces are synchrony subspaces

Fix(Σ) = {x : σ(x) = x ∀σ ∈ Σ}

Question: Are all synchrony spaces fixed-point spaces?

Answer: No

1 2

3 4

ẋ1 = g(x1, x3, x2)

ẋ2 = g(x1, x3, x1)

ẋ3 = g(x1, x4, x2)

ẋ4 = g(x1, x1, x3)
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ẋ4 = g(x1, x1, x3)

. – p.3/26



Part I: Symmetry and Synchrony
Coupled cell systems described by graph

1 2

3 4
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ẋ4 = g(x1, x1, x3)

. – p.3/26



Spatio-Temporal Symmetries

Let x(t) be a time-periodic solution

K = {γ ∈ Γ : γx(t) = x(t)} space symmetries

H = {γ ∈ Γ : γ{x(t)} = {x(t)}} spatiotemporal symmetries

Facts:

γ ∈ H =⇒ θ ∈ S
1 such that γx(t) = x(t + θ)

H/K is cyclic

Question:

How do spatiotemporal symmetries manifest
themselves in coupled cell systems?
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A Three-Cell System

1 2 3

ẋ1 = f(x1, x2)

ẋ2 = g(x2, x1, x3) g(x2, x1, x3) = g(x2, x3, x1)

ẋ3 = f(x3, x2)

Symmetry: σ(x1, x2, x3) = (x3, x2, x1)

Fix(σ) = {x1 = x3} is flow-invariant. Robust synchrony

Out-of-phase periodic solutions (H = Z2(σ), K = 1):

σX(t) = X
(
t + 1

2

)

x3(t) = x1

(
t + 1

2

)
and x2(t) = x2

(
t + 1

2

)
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ẋ2 = g(x2, x1, x3) g(x2, x1, x3) = g(x2, x3, x1)
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A Three-Cell System (2)
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Polyrhythms

1 2

4 5

3

Symmetry group of five-cell system is Z3 × Z2
∼= Z6

Periodic solutions with (H,K) = (Z6,1) can exist

Let σ = (ρ, τ) be generator of Z3 × Z2.

(σ2, 1/3) =⇒ 3-cell ring exhibits rotating wave
(σ3, 1/2) =⇒ 2-cell ring is out-of-phase
(σ , 1/6) =⇒ triple 2-cell freq = double 3-cell freq
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Polyrhythms (2)
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Summary on Symmetry

Permutation symmetries of coupled cell systems lead to

synchrony

discrete rotating waves

multifrequency motions
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Part II: Coupled Cell Theory

input sets and input isomorphisms

network architecture and symmetry groupoids

balanced colorings and synchrony subspaces

quotient networks (discussed with examples)

Main Results

1) synchrony subspace iff balanced coloring

2) restriction to synchrony subspace is a coupled cell
system — the quotient network

3) every quotient cell system lifts
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Asymmetric Three-Cell Network

1 2

3

ẋ1 = f(x1, x2, x3)

ẋ2 = f(x2, x1, x3)

ẋ3 = g(x3, x1)

Robust synchrony exists in networks without symmetry

Polydiagonal Y = {x : x1 = x2} is flow-invariant

Restrict equations ẋ1, ẋ2 to Y

ẋ1 = f(x1, x1, x3)

ẋ2 = f(x1, x1, x3)

Cells 1 and 2 are identical within the network
. – p.11/26



Input Sets

Input set of cell j: Cell j & cells i that connect to j

Key idea: cells 1, 2 have isomorphic input sets

1 2

3

1 2

3

1

3
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Coupled Cell Network Definition

(a) A set C = {1, . . . , N} of cells

(b) An equivalence relation ∼C on cells in C

(c) Each node c has a finite set of input terminals I(c).
Each i ∈ I(c) corresponds to an arrow (τ(i), i)
beginning at τ(i) and ending at i. E = set of arrows

(d) An equivalence relation ∼E on arrows in E

(e) Equivalent arrows have equivalent tails and heads

A coupled cell network is represented by a graph

For each class of cells choose node symbol ©,�,4

For each class of arrows choose arrow symbol →,⇒, 
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Symmetry Groupoid

Cells c, d are input equivalent ∼I if there is a bijection

β : I(c) → I(d)

such that (i, c) ∼E (β(i), d) for all i ∈ I(c)

Any such bijection β is an input isomorphism
B(c, d) = set of input isomorphisms from cell c to cell d

The symmetry groupoid of a coupled cell graph G is

BG =
⋃̇

c,d∈C
B(c, d)

Groupoid is like group; but products not always defined

Coupled cell systems: ODEs that commute with BG

. – p.14/26
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Patterns of Synchrony

Color cells in C

∆ = {x ∈ P : xc = xd whenever c and d have same color}

Coloring is pattern of synchrony if ∆ is always flow invariant

Coloring is balanced if every pair of cells with same color
has a color preserving input isomorphism

Thm: Coloring is pattern of synchrony iff coloring is balanced

. – p.15/26
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Part III: Examples

Lattice dynamical systems

Classify balanced two colorings up to symmetry
Balanced two colorings occur in codimension one
bifurcations (use quotient networks)

Feed-forward network

Amplitude enhancement in Hopf bifurcation
Different dynamics in different cells
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Lattice Dynamical Systems

Consider square lattice with nearest neighbor coupling

Form a two-color balanced relation

Each black cell connected to two black and two white
Each white cell connected to two black and two white

. – p.17/26



Lattice Dynamical Systems (2)
On Black/White diagonal interchange black and white

Result is balanced

A continuum of different patterns of synchrony exist

. – p.18/26
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Lattice Dynamical Systems (3)
Yunjiao Wang

There are eight isolated balanced two-colorings on
square lattice with nearest neighbor coupling
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Lattice Dynamical Systems (4)

There are two infinite families of balanced two-colorings
generated by interchanging black and white along
diagonals on which black and white cells alternate

Up to symmetry, these are the two-color patterns of
synchrony

. – p.20/26



Quotient Cell Systems

Given G = (C,∼C , E ,∼E) and balanced coloring ./

Define: quotient network G./ = (C./,∼C./
, E./,∼E./

) by

(a) C./ = {c : c ∈ C} = C/ ./

(b) Define c ∼C./
d ⇐⇒ c ∼C d

(c) Arrows in quotient are projection of arrows in original
network E./ = {(τ(i), i) : (τ(i), i) ∈ E}

(d) Quotient arrows are ∼E./
when original arrows are ∼E

Thm: G-admissible ODE restricted to ∆./ is G./-admissible

Every G./-admissible ODE on ∆./ lifts to G-admissible ODE

. – p.21/26



Two Color Quotient Networks

Balanced two coloring has two-cell quotient

Claim: Each balanced two coloring of square lattice
leads to equilibria in codimension one bifurcations

. – p.22/26
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Homogeneous Two-Cell Networks

m1

m2

k1 k2

1 2

` = k1 + m1 = k2 + m2

ẋ1 = f(x1, x1, . . . , x1
︸ ︷︷ ︸

k1

, x2, . . . , x2
︸ ︷︷ ︸

m1

)

ẋ2 = f(x2, x2, . . . , x2
︸ ︷︷ ︸

k2

, x1, . . . , x1
︸ ︷︷ ︸

m2

)

x1 = x2 is flow-invariant

Jacobian =

[

α + k1β m1β

m2β α + k2β

]

where

α = linear internal and β = linear coupling

Eigenvalues are α + `β ((1, 1)) and α + (k1 + k2 − `)β

Vary β: codimension 1 synchrony-breaking bifurcation

. – p.23/26
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Three-Cell Feed-Forward Network

1 2 3

ẋ1 = f(x1, x1)

ẋ2 = f(x2, x1)

ẋ3 = f(x3, x2)

J =

2

6

6

4

α + β 0 0

β α 0

0 β α

3

7

7

5

Network supports solution by Hopf bifurcation where
x1(t) equilibrium x2(t), x3(t) time periodic
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x2(t) ≈ λ1/2 x3(t) ≈ λ1/6
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Three-Cell Feed-Forward Network (2)

Network supports solution where

x1(t) equilibrium, x2(t) time periodic, x3(t) quasiperiodic
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Something to think about

In a far away land

In a far away corner

Near a big island (Hook Island)

Near a small beach (Stonehaven)

Is a beautiful small island

. – p.26/26



Something to think about

In a far away land

In a far away corner

Near a big island (Hook Island)

Near a small beach (Stonehaven)

Is a beautiful small island

. – p.26/26



Something to think about

In a far away land

In a far away corner

Near a big island (Hook Island)

Near a small beach (Stonehaven)

Is a beautiful small island

. – p.26/26



Something to think about

In a far away land

In a far away corner

Near a big island (Hook Island)

Near a small beach (Stonehaven)

Is a beautiful small island

. – p.26/26



Something to think about

In a far away land

In a far away corner

Near a big island (Hook Island)

Near a small beach (Stonehaven)

Is a beautiful small island

. – p.26/26


	Coupled Cell Systems
	Overview
	Part I: Symmetry and Synchrony
	Spatio-Temporal Symmetries
	A Three-Cell System
	A Three-Cell System (2)
	Polyrhythms
	Polyrhythms (2)
	Summary on Symmetry
	Part II: Coupled Cell Theory
	Asymmetric Three-Cell Network
	Input Sets
	Coupled Cell Network Definition
	Symmetry Groupoid
	Patterns of Synchrony
	Part III: Examples
	Lattice Dynamical Systems
	Lattice Dynamical Systems (2)
	Lattice Dynamical Systems (3)
	Lattice Dynamical Systems (4)
	Quotient Cell Systems
	Two Color Quotient Networks
	Homogeneous Two-Cell Networks
	Three-Cell Feed-Forward Network
	Three-Cell Feed-Forward Network (2)
	Something to think about

