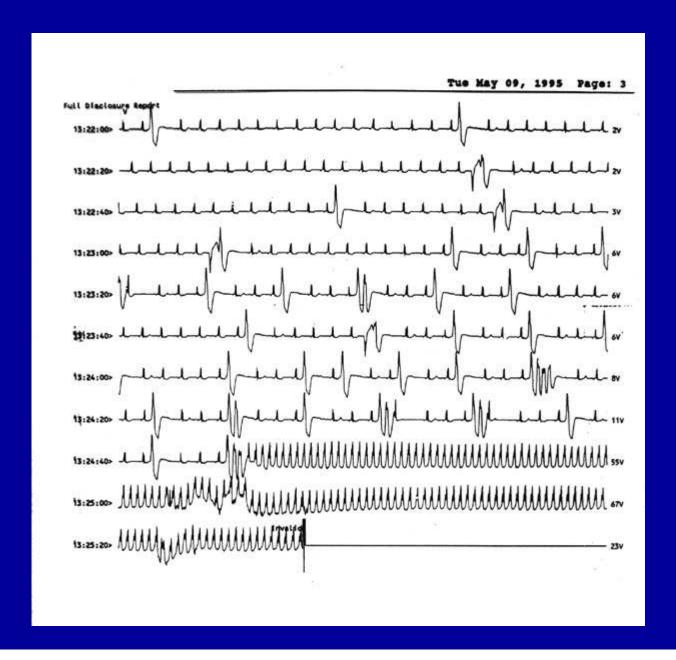
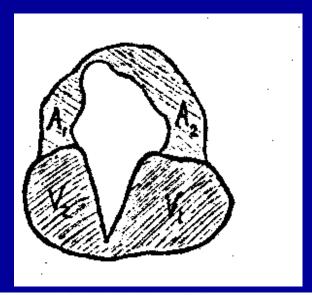
DYNAMICS OF REENTRANT TACHYCARDIA

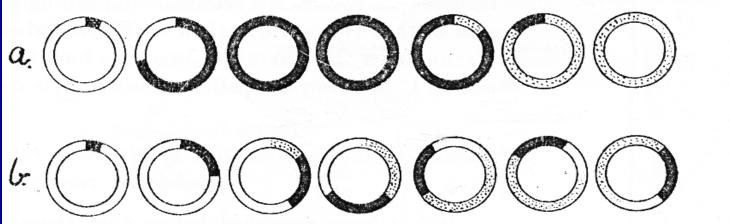
Leon Glass
Isadore Rosenfeld Chair in
Cardiology, McGill University,
Montreal, Quebec

Cardiac arrhythmias suddenly start and stop



Anatomical Reentry



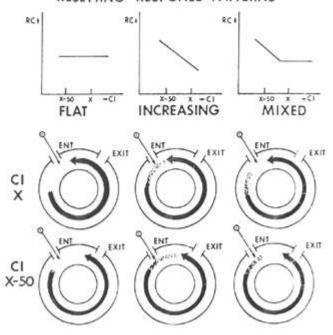


G. R. Mines (1913)

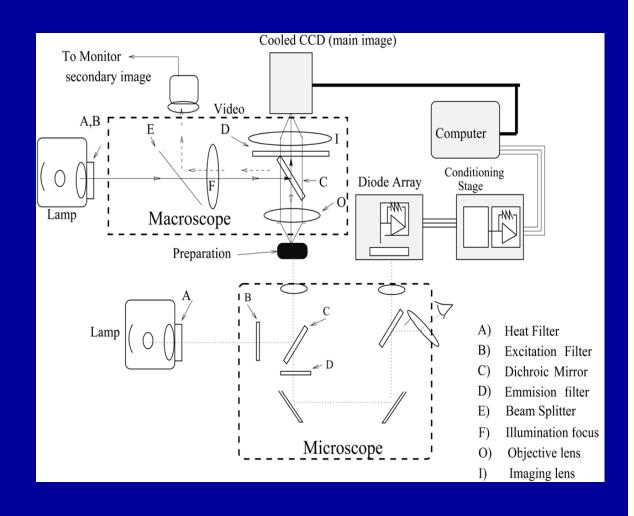
Resetting and Entrainment of Ventricular Tachycardia Associated with Infarction: Clinical and Experimental Studies

M. E. JOSEPHSON, D. CALLANS, J. M. ALMENDRAL, B. G. HOOK, R. B. KLEIMAN

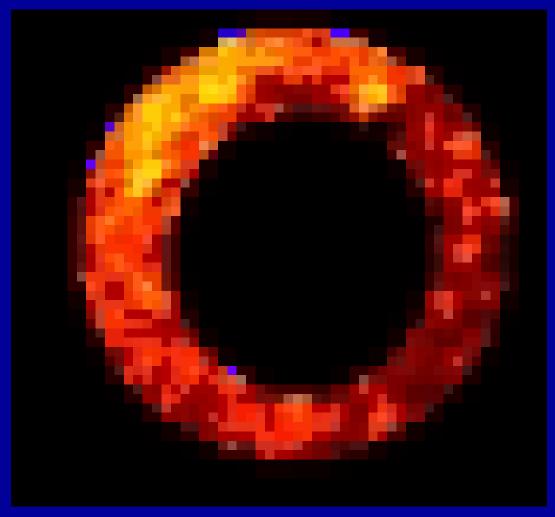
RESETTING RESPONSE PATTERNS



Macroscope for studying dynamics in tissue culture (Gil Bub, Alvin Shrier, Yoshihiko Nagai, Katsumi Tateno)

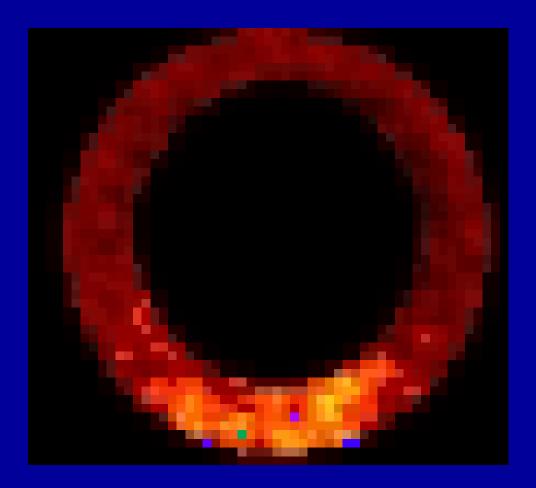


Dynamics in a Ring of Cardiac Cells

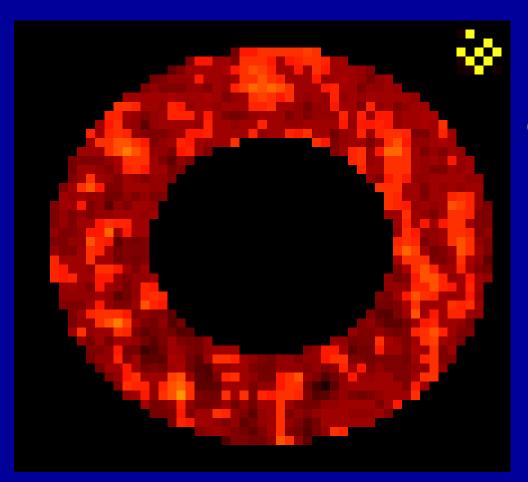


Pacemaker

Nagai, Gonzalez, Shrier, Glass, PRL (2000)



Reentry



Cardiac Ballet

Physiological properties of real heart cells

- Excitable
- Oscillatory (can be reset and entrained)
- Fatigue (less excitable following rapid stimulation – overdrive suppression)
- Heterogeneous

FitzHugh-Nagumo Model of Propagation

$$\frac{\partial v}{\partial t} = -(v + .1)(v - .9)(v - .039) - w + D\frac{\partial^2 v}{\partial r^2} + I,$$

$$\frac{\partial w}{\partial t} = (.005v - .01w + .0005)R(\zeta, v),$$

$$\frac{dz}{dt} = -\gamma_{\alpha}z + (\Delta z)\delta(t - t_{AP}),$$

$$\zeta(z) = \frac{.015}{z+1.},$$

$$R(\zeta,v) = \begin{cases} \frac{(1-\zeta)}{1+10e^{-10(v-.1)}} + \zeta, & \textbf{Pacemaker cells} \\ 1 & \textbf{Otherwise} \end{cases}$$

Properties of Excitation Circulating on Rings

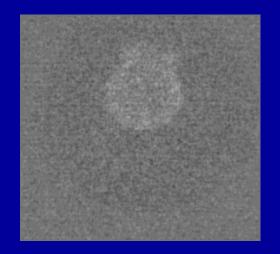
- As the ring becomes smaller, an instability develops so that the cycle time fluctuates quasiperiodically (Frame and Simson, 1988; Courtemanche, Keener, Glass, 1993)
- A single stimulus can either reset or annihilate the excitation (Glass and Josephson, 1995; Gedeon and Glass, 1999). Relevant to antitachycardia pacemakers.
- Resetting of an excitation circulating on a ring can be used to predict the entrainment by periodic stimuli (Nomura and Glass, 1996; Glass, Nagai, Hall, Talajic, Nattel, 2002)

Strategy of "Proof" of Annihilation of Pulses Circulating on Rings (Gedeon and Glass, 1999)

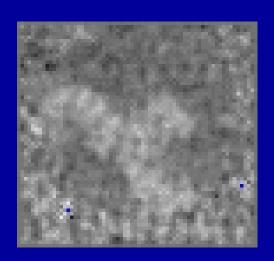
- A ring of excitable medium supports a circulating pulse
- *Continuity theorem: If a perturbation delivered at any phase of a limit cycle oscillation leaves the state point in the basin of attraction of the limit cycle, then the resetting curves are continuous.
- Resetting curves for stably circulating pulses on a one dimensional ring are discontinuous.

Pacemakers and Reentry in Tissue Culture

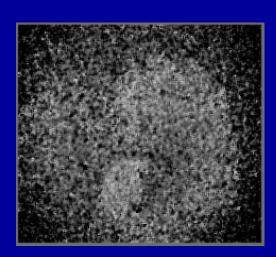
Calcium Target (Calcium Green)



Calcium Spiral (Calcium Green)

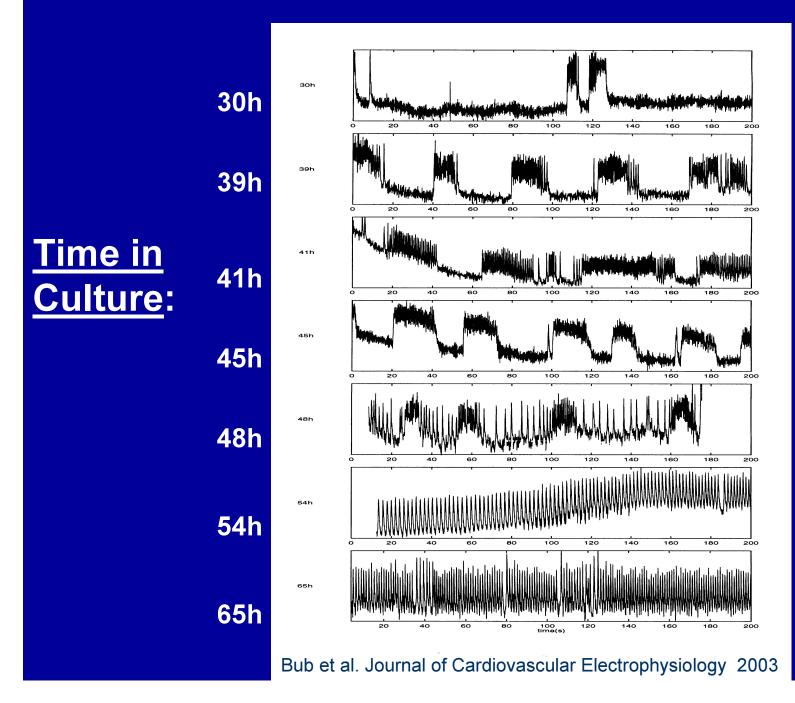


Voltage Spiral (di-4-ANEPPS)



Spiral waves have been hypothesized as a mechanism for VT and VF (Wiener and Rosenblueth, Krinsky, Winfree, Allessie, Jalife, and many others)

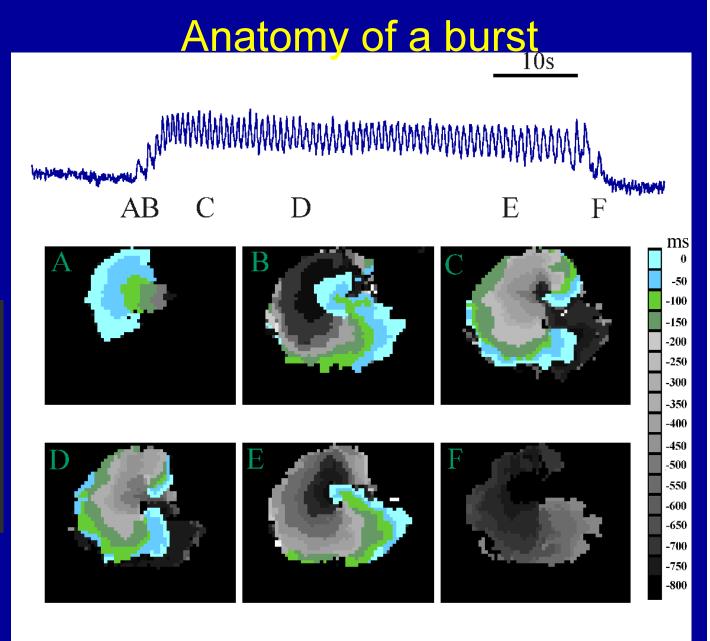
Dynamics as a Function of Age of Tissue Culture

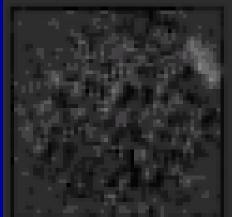


irregular activity

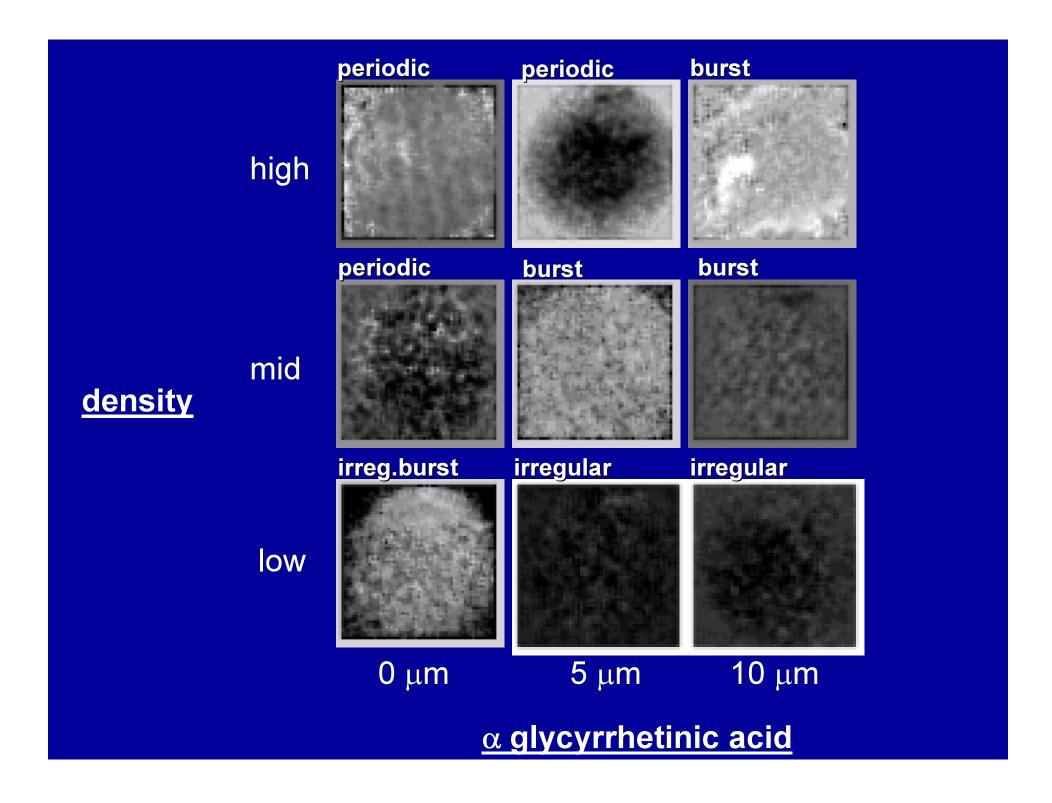
bursting spirals

stable spirals

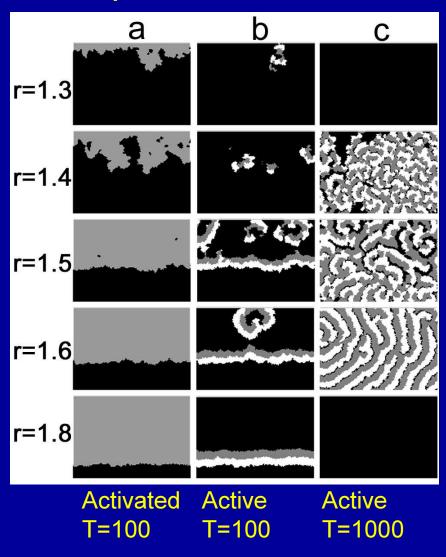




Bub, Glass, Publicover, Shrier, PNAS (1998)

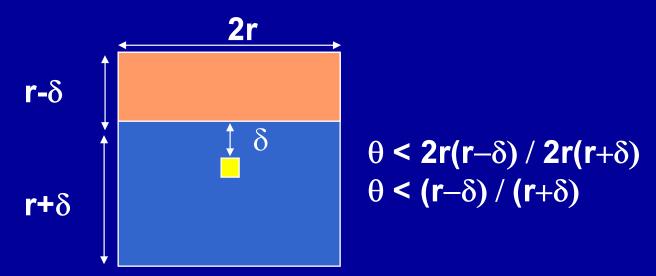


Activity starting from excitation in the top row at t=0.

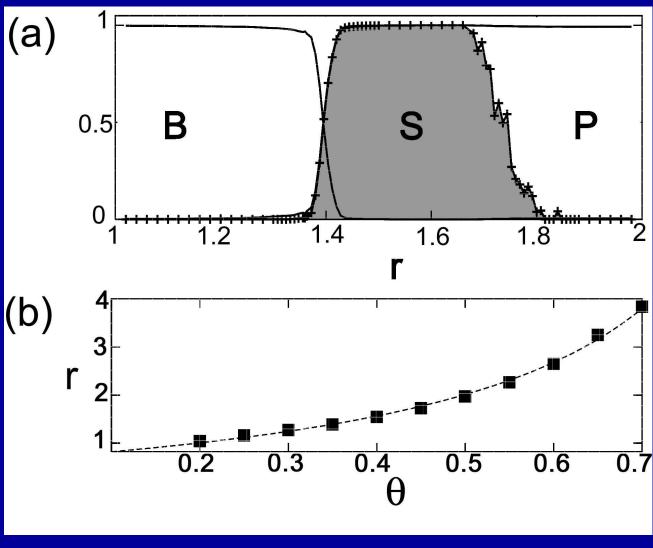


Cellular Automata Model of Cell Connectivity

Reduction of cell connectivity is modeled by decreasing \mathbf{r} , the neighborhood for interaction. Consider a cell a distance δ away from an activation front. For a cell to be active at the next iteration the ratio between the number of excited cells in its and the number of inexcited cells must be greater than the threshold.



Boundary of block as a function of the radius of interaction



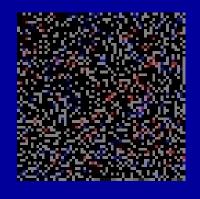
$$r_c = \delta(1+\theta)/(1-\theta)$$

Simulating bursting dynamics as a function of connectivity

- 1)Add spontaneous activity by giving excitable cells a probability of firing.
- 2) Add fatigue by giving each cell a fatigue variable η where
- a) if the cell just became excited, $\eta_{i,j}(t+1) = \eta_{i,j}(t) + F$,
- b) Otherwise, $\eta_{i,j}(t+1) = \chi \eta_{i,j}(t)$, where $0 < \chi < 1$ (exponential decay)

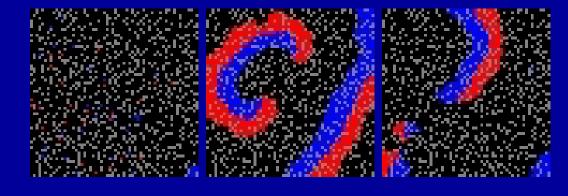
Now a cell is activated if $\eta_{i,j} + \theta <$ active/inactive

R=3, θ =0.35



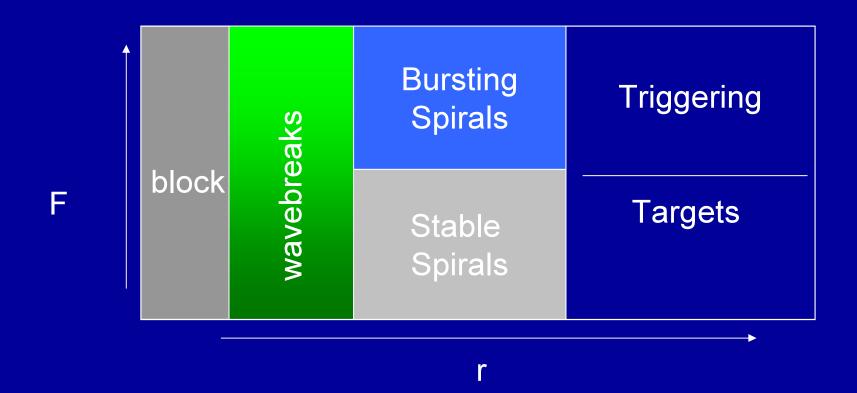
Target patterns ('periodic')

R=1.8, θ =0.35



bursting

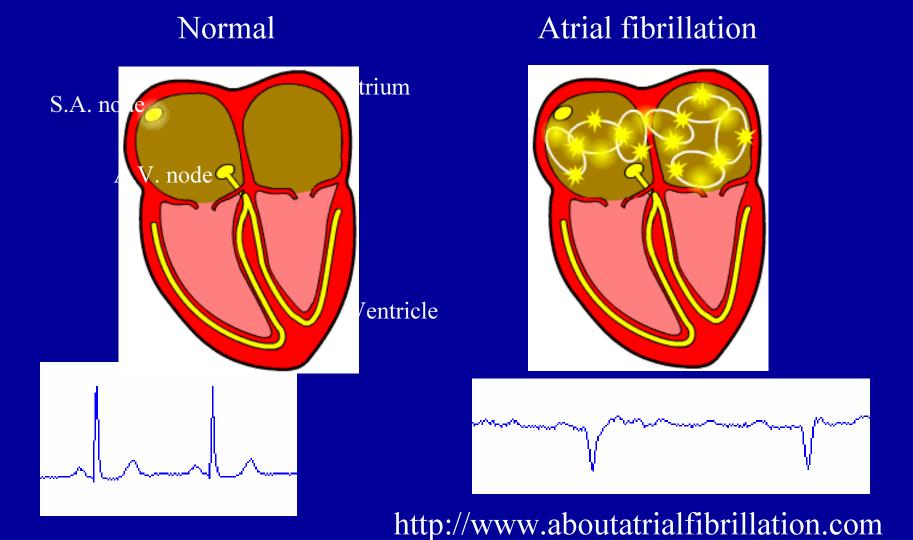
Organization of dynamics in parameter space



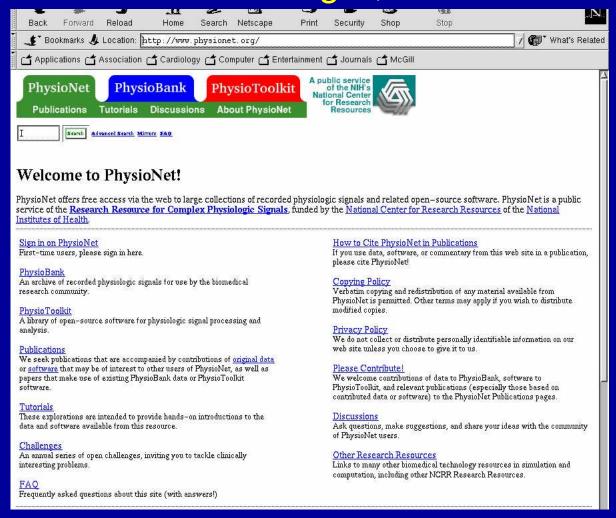
Practical Applications

Analyze complex rhythms for diagnosis and prognosis

Can you detect atrial fibrillation based on the RR intervals?

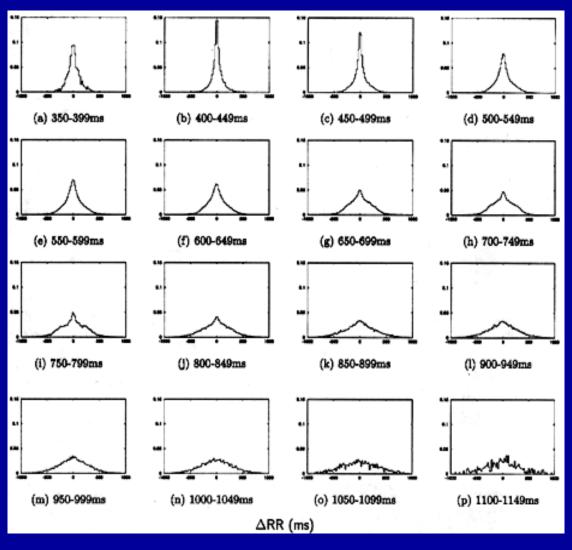


National Resource for Complex Physiologic Signals A. Goldberger, Director



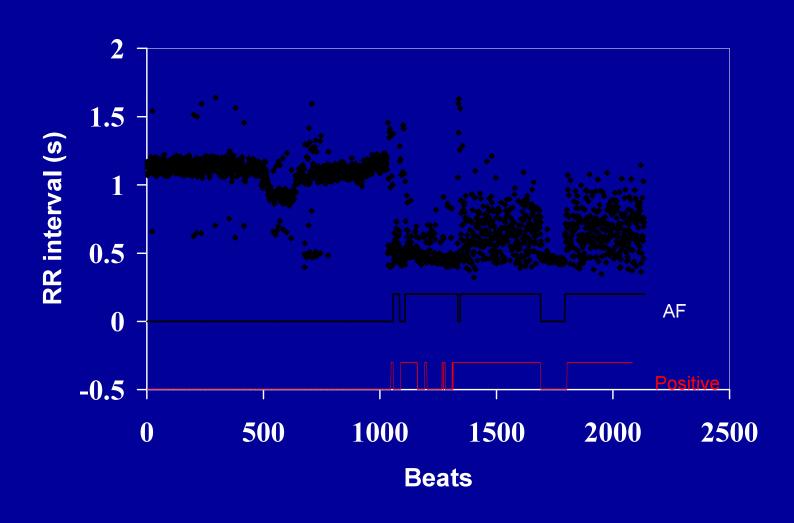
http://www.physionet.org

Use Histograms of ARR Intervals to detect AF



Tateno and Glass (2001)

Data Analysis: MIT-BIH arrhythmia database (From PhysioNet)



Conclusions

- Experimental systems and mathematical models of reentry show paroxysmal rhythms similar to paroxysmal reentrant rhythms. To date these have NOT been a focus for theoretical analysis.
- Applications that use nonlinear mathematics for better diagnosis, and control of cardiac arrhythmias are under development

Acknowledgments

Collaborators: Alvin Shrier, Ary Goldberger, Gil Bub, Hortensia González, Yoshihiko Nagai, Katsumi Tateno

Funding Agencies: NSERC, CIHR (MRC), MITACS, NIH (National Resource for Complex Physiologic Signals), Canadian Heart and Stroke Foundation

McGill Summer School in Computational Biology – May 2004