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Summary of Talk
• Heteroclinic networks:

Templates for complex dynamics.
• Switching.
• Connection Selection.
• Product dynamics.
• Attractors.
• Results
• Indication of proofs.
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Heteroclinic Networks
A feature of equivariant dynamics and, more
generally, coupled cell systems is the existence of
robust heteroclinic cycles and networks.

S 2

=∆ Z3 2
3 , G = Z3

2 or 2Z 3 .Z3

 Orbit

quotient

∆ 3

by

Figure 1: Network on S2 and orbit quotient
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1-dimensional connections
In simple situations, a heteroclinic network will be
comprised of a number of nodes, Aj – typically,
hyperbolic equilibria of index 1 – together with
1-dimensional connections between nodes (usually
W u(Aj)).

Figure 2: 1-dimensional connections
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Even if there are only 1-dimensional connections, dy-
namics may be very complex near an attracting net-
work. For example, in the recent thesis of Manuela
Aguiar (Porto), Aguiar shows that random switching
can occur between the nodes of a heteroclinic network,
with switching precisely quantified by a subshift of fi-
nite type. This switching occurs arbitrarily close to the
network (also work by Kirk & Silber, Guckenheimer
& Worfolk).
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Complex dynamics I
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Figure 3: Switching
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Complex Dynamics II
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Figure 4: A more complicated network
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Connection selection
More generally, nodes can be limit cycles or chaotic
sets (“cycling chaos”). Also, there may be a continua
of connections between nodes. The latter behaviour is
typical of the kind of networks that can be expected in
‘coupled cell systems’ where invariant subspaces
typically correspond to synchronous states.

In this talk we focus on the study of dynamics and
asymptotics near a heteroclinic attractor. The main
problem we consider is that of connection selection.
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Figure 5: A heteroclinic attractor in S3

Suppose x ∈ B(Σ) (basin of attraction). What,
generically is ω(x)? More precisely, what connections
in S2 ⊂ Σ do we expect to ‘see’ in the dynamics.
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History & Sources
The issue of connection selection was first raised in
Ashwin & Chossat (Attractors for robust heteroclinic
cycles with continua of connections, J. Nonlinear Sci.,
1997). Other relevant sources include Melbourne
(Intermittency as a codimension three phenomenon, J.
Dyn. Diff. Eqn. 1989), Kirk & Silber (A competition
between heteroclinic cycles, Nonlinearity 1994).
Ashwin & F (Heteroclinic networks in coupled cell
systems, Arch. Rat. Mech. & Anal. 1999), Ashwin, F,
Rucklidge & Sturman (Phase resetting effects for
robust cycles between chaotic sets, Chaos, 2003),
Guckenheimer & Worfolk (‘Instant Chaos’,
Nonlinearity, 1992).
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Product dynamics
The problem of connection selection is tricky.

In this talk, we focus on a simple situation (one where
we can obtain results. . . ).

A prerequisite for understanding the behaviour of
coupled systems is understanding the dynamics of
uncoupled (product) systems. For example, the
product of periodic attractors.

We look at flows that are the product of a homo-
clinic attractor with either an attracting limit cycle, or
a chaotic set or another homoclinic attractor.
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Attractors
Let Φt be a continuous flow (or semiflow) defined on
a compact region M ⊂ Rn. We assume that M is
forward invariant under Φt. Denote Lebesgue measure
on Rn by `. If X ⊂M , let

B(X) = {x ∈M | ω(x) ⊂ X}

denote the basin of attraction of X .
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Definitions
A compact invariant set X ⊂M is a (Milnor)
Attractor if

1. `(B(X)) > 0.
2. For any proper compact invariant Y ⊂ X ,
`(B(X) \ B(Y )) > 0.

X is a minimal attractor if for all proper compact
invariant Y ⊂ X , `(B(Y )) = 0.

X is minimal iff ∃ a full measure B ⊂ B(X) such that
ω(x) = X , all x ∈ B.
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Definitions
If Z is an invariant measurable set with `(Z) > 0,
then the likely limit set Λ(Z) of Z is the smallest
closed invariant set that contains all ω-limit sets
except for a zero measure subset of Z.

If X is a Milnor attractor then Λ(B(X)) = X .
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A model homoclinic attractor
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Figure 6: A model homoclinic attractor in R2
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We consider a simple – but general – 2-dimensional
model for an attracting homoclinic cycle. We assume
that we are given a smooth (at least C7) flow φt on R2

with an attracting homoclinic cycle Σ connecting the
origin. We assume the origin is a hyperbolic saddle
with associated eigenvalues −a < 0 < b where

a > b > 0, 4b, 3b, 2b 6= a, 2a 6= 3b

These conditions imply that φt is C3-linearizable at
the origin (Samoval, 1972, Belickii, 1973).
Let H ⊂ B(Σ) be a forward-invariant, one sided
neighbourhood of Σ.
Restricting to φt : H→H , it is well-known that Σ is a
minimal attractor and, of course, Λ(H) = Σ
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Results

• Let ψt(x) = x+$t be a periodic flow on S1 (or
a hyperbolic attracting limit cycle). Then Σ× S1

is a minimal attractor for the product system
φt × ψt : H × S1→H × S1.
• Let ψt : X→X be the suspension of an SSFT (or

basic set or hyperbolic attractor). Then Σ×X is
a Milnor attractor for the product system φt × ψt.
• Let ψt : Hi→Hi be homoclinic attractors in R2

and qi ∈ Σi denote the equilibrium point on Σi,
i = 1, 2. Set Σ = ({q1} × Σ2) ∪ (Σ1 × {q2}).
Then either Σ or Σ1 × Σ2 is a (maximal) Milnor
attractor for the product system,
For a class of model homoclinic attractors, Σ is a minimal attractor.
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Product with limit cycle
Regard S1 = [0, 1]/ ∼, 1 ∼ 0.
Minimality of Σ× S1 follows from

THEOREM
For almost all initial conditions (z, θ) ∈ H × S1,

ω(z, θ) = Σ× S1.

Proof of theorem. (Sketch) Let I be a cross section
for the flow on H and T = I × [0, 1] be a section for
the product flow (see figure). We define a return map
P : T→T in the obvious way.
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[0,1]

I T  

T = I x [0,1]

Σ
(0,0)

H

Given (z, θ) ∈ T , we obtain a sequence of iterates
(zn, θn) ⊂ T and so a sequence (θn) ⊂ S1.
It suffices to prove that for almost all (z, θ) ∈ T , (θn)
is uniformly distributed in S1.
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For quasiperiodic flows, we prove minimality by
using the fact that [nα] is uniformly distributed in
[0, 1] if α is irrational.

For homoclinic cycles, the return times grow
geometrically – approximately as Cλn, where
λ = a/b > 1 – and so we might expect to use Weyl’s
theorem that [Cλn] is uniformly distributed in [0, 1]
for almost all choices of C. However, this is far too
precise an assumption to make on the return times.
If we let Sn(z) denote the return time to the nth hit
then, after some work, it can be shown that ∀n > m
S ′n(z)− S ′m(z) is monotonic and

|S ′n(z)− S ′m(z)|

is uniformly bounded above zero.
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It then follows by a corollary of a theorem of
Davenport, Erdös & LeVeque, that θ +$Sn(z) is
uniformly distributed in [0, 1], almost all z (not all
z 6= 0).

THEOREM
Let fn(x) be a sequence of functions on [α, β] such
that f ′n(x)− f ′m(x) is monotonic for all n > m. Then
if

|f ′n(x)− f ′m(x)| ≥ δ, m 6= n,

some δ > 0 then the sequence fn(x) is uniformly
distributed modulo one for almost all x ∈ [α, β].
(A proof may be found in Glen Harman, Metric
number Theory, Chapter V.)
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Product with a chaotic set
The proof that the product of a homoclinic attractor
and a suspended SSFT S is a Milnor attractor depends
on showing that the likely limit set of H × S equals
Σ× S. This requires a fairly detailed knowledge of
SSFTs and the use of the Borel-Cantelli lemma. It is
not clear that the product is a minimal attractor.

This type of result is relevant for the study of cycling
chaos.
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Product of homoclinic attractors
Let ψt : Hi→Hi be homoclinic attractors in R2 and
qi ∈ Σi denote the equilibrium point on Σi, i = 1, 2.
Set

Σ = ({q1} × Σ2) ∪ (Σ1 × {q2})

THEOREM
Either Σ or Σ1 × Σ2 is a (maximal) Milnor attractor
for the product system,
This result follows from a result about the likely limit
set for product flows. First, a tautological Lemma.
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Lemma
Let Z be a (forward) invariant measurable set with
`(Z) > 0. Then x ∈ Λ(Z) iff ∀ε > 0, ∀ full measure
subsets H of Z, ∃a ∈ H such that

Bε(x) ∩ ω(a) 6= ∅.

Proof. x /∈ Λ(Z) iff ∃ε > 0, and ∃H ⊂ Z,
`(Z \H) = 0, such that

Bε(x) ∩ ω(a) = ∅, ∀a ∈ H.
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Theorem
Let φt : X→X , ψs : Y→Y be C1-flows defined on
compact regions X ⊂ Rm, Y ⊂ Rn. The likely limit
set Λ of X × Y is invariant under the R2-action
defined by (φt, ψs), (t, s) ∈ R2.

Proof. Write Φt,s = (φt, ψs). Fix (t, s) ∈ R2, (x, y) ∈
Λ and set Φt,s(x, y) = (x′, y′). Given ε > 0, ∃δ > 0

such that Φt,s(Bδ(x, y)) ⊆ Bε(x
′, y′). Since Φt,s is

C1, if H ′ ⊂ X × Y is of full measure so is
H = Φ−t,−s(H

′). By the lemma, ∃(a, b) ∈ H such
that Bδ(x, y) ∩ ω(a, b) 6= ∅. But Φt,s(a, b) ∈ H ′ and
Bε(x

′, y′) ∩ ω(Φt,s(a, b)) 6= ∅. Hence (x′, y′) ∈ Λ.
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It follows easily from the theorem that

Λ(H1 ×H2) = Σ or Σ1 × Σ2.

The expectation is that we always have
Λ(H1 ×H2) = Σ and Σ is a minimal attractor.

This is true if we make very strong assumptions on
the ‘return’ maps. Even then, methods depend on
using restricted Diophantine conditions and Liouville
type estimates to quantify the ‘bad’ initial conditions.
Roughly speaking, the issue is to find all limit points
of the double sequence (αλm1 − βλn2), where
λ1, λ2 > 1 and α, β depend on initial conditions.
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Generalizations & Questions

• If the vector field is only C1 or fails to be C2

linearizable, can the likely limit set of the product
with a limit cycle have complex structure – for
example, be locally the product of an interval
with a Cantor set?
• Can the results be generalized to general

heteroclinic attractors?
• Can the results be extended to skew products

(weak coupling)?
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