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Early History of PDEs

Early PDEs

• Wave equation, d’Alembert 1752, model for vibrating string

• Laplace equation, 1790, model for gravitational potential

• Heat equation, Fourier, 1810-1822

• Euler equation for incompressible fluids, 1755

• Minimal surface equation, Lagrange, 1760

• Monge-Ampère equation by Monge, 1775

• Laplace and Poisson, applied to electric and magnetic problems:

Poisson 1813, Green 1828, Gauss, 1839

Solution methods were introduced

• separation of variables,

• Green’s functions,

• Power Series,

• Dirichlet’s principle.



H. Poincarré

An influential paper by H. Poincaré in 1890, remarked that a wide variety

of problems of physics:

• electricity,

• hydrodynamics,

• heat,

• magnetism,

• optics,

• elasticity, etc. . .

have“un air de famille” and should be treated by common methods.

Stressed the importance of rigour despite the fact that the models are

only an approximation of physical reality. Justified rigour

• For intrinsic mathematical reasons

• Because PDEs may be applied to other areas of math.



Nonlinear PDE and fixed point methods

Picard and his school, beginning in the early 1880’s, applied the method

of successive approximation to obtain solutions of nonlinear problems

which were mild perturbations of uniquely solvable linear problems.

S. Banach 1922, fixed point theorem:

In a complete metric space X, a mapping S : X → X which satisfies

‖S(x) − S(y)‖ < K‖x − y‖, for all x, y ∈ X, and for K < 1,

has a unique fixed point.



Modern theory: non-constructive

Prior to 1920: classical solutions, constructive solution methods.

The development around 1920s of

1. Direct methods in calculus of variations.

(Classical spaces not closed: weak solutions lie in the completion.)

2. Approximation procedure used to construct a solution.

(Approximate solutions no longer classical.)

Led to notion of weak solution.

New methodology, separated issues of

i. Existence of weak solution

ii. Uniqueness of weak solution

iii. Regularity of weak solution

but no longer had

iv. Explicit construction of solutions



R. Courant, K. Freidrichs, H. Lewy 1928

Seminal paper in numerical analysis, predated computers.

Constructive solution methods for classical linear PDEs of math physics:

• elliptic boundary value and eigenvalue,

• hyperbolic initial value,

• parabolic initial value.

The finite difference method:

• replace differentials by difference quotients on a mesh.

• Obtain algebraic equations, construct solutions to these equations.

• Prove convergence (in L2 norm).

Elliptic PDE: implicit scheme.

Hyperbolic/Parabolic PDE: explicit scheme

but with restriction on the time step, (the CFL condition.)



Finite Differences for Laplacian and Heat Equation

Centered difference scheme for −uxx.

F i(u) =
1

dx

(

ui − ui−1

dx
+

ui − ui+1

dx

)

Implicit and explicit Euler scheme for ut = uxx




un+1
i − un

i

dt



 + F i(un+1) = 0,





un+1
i − un

i

dt



 + F i(un) = 0.

Explicit scheme gives a map

un+1 = Sdt(u
n) = un

i − dtF i(un).

For explicit scheme, require

dt ≤
1

2
dx2 (CFL)

for stability in L2.



Convergence of Approximation methods

Lax-Richtmeyer 1959, stability necessary for convergence of linear dif-

ference schemes in L2.

Lax Equivalence theorem a “Meta-theorem” of Numerical Analysis:

Consistent, stable schemes are convergent.

Need to make these notions precise to get a theorem,

in particular, need to assign a norm for stability.

For nonlinear or degenerate PDE, the solutions may not be smooth.

It is essential for convergence
that the norm used in the existence and uniqueness theory

be the norm used for stability of the approximation.



Stability in ℓ∞ and in ℓ2

Let M be linear map M : Rn → Rn.

‖Mx‖2 ≤ ‖x‖2 for all x iff all eigenvalues of MMT in unit ball

‖Mx‖∞ ≤ ‖x‖∞ for all x iff
n

∑

j=1

|Mij| ≤ 1, i = 1, . . . n.

Explicit Euler for heat equation: stability conds. in ℓ2 and ℓ∞ coincide.

In general these notions do not coincide.

For linear maps, stability in ℓ∞ is stronger than stability in ℓ2.

Note:

• Stability in ℓ∞: examine coefficients.

• Stability in ℓ2: check a spectrum.



T.S. Motzkin and W. Wasow 1953

Finite difference schemes for linear elliptic equations

Adxu = −
∑

j

aj(dx)u(x − j dx), in R
n.

Scheme is of “positive type” if aj ≥ 0 for j 6= 0 and a0 < 0.

Prove discrete maximum principle by “walking to the boundary,”

prove convergence (now using L∞ norm) as dx → 0.

Rewrite Adxu as

Adxu =
1

dx2

∑

i6=0

pi(u(x) − u(x − ih)) + p0u(x),

where now pi ≥ 0, i 6= 0.

Random Walk:

pi probability of jump from x to x − ih, p0 prob of decay.



The Comparison Principle

Viscosity Solutions, Monotone schemes



The comparison principle

Schematic:

data → PDE → solution.

Comparison principle:

If data1 ≤ data2 then solution1 ≤ solution2.

E.g. data corresponds to:

boundary conditions for elliptic equations,

initial conditions For parabolic equations.

Solutions are functions on the domain.



Monotonicity for schemes:

The discrete comparison principle.

Schematic:

data → numerical scheme → solution.

Monotonicity:

If data1 ≤ data2 then solution1 ≤ solution2.

Data: a finite number of function values at points on the boundary of

the computational domain:

boundary conditions for elliptic equations,

initial conditions For parabolic equations.

Solutions are finite number of function values at grid points (nodes) in

the entire domain.



Local structure conditions

Local structure conditions on the PDE (degnerate ellipticity) ensures

that the comparison principle holds.

We find (A.O.) local structure conditions on the numerical schemes

which ensures that monotonicity holds. Furthermore, this structure

condition leads to

• self-consistent existence and uniqueness proofs for solutions of the

scheme,

• an explicit iteration scheme which can be used to find solutions.

Elliptic equations lead to implicit schemes, whereas explicit, monotone

schemes for parabolic equations can be built from the scheme for the

underlying elliptic equation.



Viscosity Solutions

Weak notion of solution for PDEs where the comparison principle holds.

F (x, u, ux, uxx) = 0, in one space dimension,

F (x, u, Du, D2u) = 0, in higher dimensions,

F (x, r, p, M) → R. F : Rn×R×Rn×Sn → R, where Sn space of symmetric

n × n matrices.

Definition: the function F is degenerate elliptic, if it is non-increasing

in M and non-decreasing in r.

Degenerate ellipticity is a local structure condition on the function F

which yields the global comparison principle.

Examples:

min {ut − uxx, u − g(x)} = 0 parabolic obstacle problem

ut − |ux| = 0 front propagation

Note: “degenerate elliptic” includes parabolic: degenerate in t var.



Viscosity Solutions - Definition

The bounded, uniformly continuous function u is a viscosity solution of

the degenerate elliptic equation

F (x, u, Du, D2u) = 0 in Ω

if and only if for all φ ∈ C2(Ω), if x0 ∈ Ω is a nonnegative local maximum

point of u − φ, one has

F (x0, φ(x0), Dφ(x0), D
2φ(x0)) ≤ 0,

and for all φ ∈ C2(Ω), if x0 ∈ Ω is a nonpositive local minimum point of

u − φ, one has

F (x0, φ(x0), Dφ(x0), D
2φ(x0)) ≥ 0.

Monotonicity is a global condition.



Existence and Uniqueness of Viscosity Solutions

M. Crandall, P.L. Lions, G. Barles, L.C. Evans, H. Ishii, P.E. Souganidis

Theorem. For a wide class of degenerate elliptic equations there exist

unique viscosity solutions.

Viscosity solutions are the correct framework for proving existence and

uniqueness results for PDE for which the Comparison Principle holds.



Convergence of Approximation Schemes

G. Barles and P.E. Souganidis (1991)

Theorem.The solutions of a stable, consistent, monotone scheme con-

verge to the unique viscosity solution of the PDE.

Q: Does it really matter if the schemes are not monotone?

Q: How do we find monotone schemes?



End of introduction

To follow:

definitions, and theorems regarding: building monotone schemes.

Results for

• Math Finance, HJ equations

• Nonconvergent methods

• Convergent schemes for motion by mean curvature, infinity laplacian



Heuristic: norms for convergence

Correct norms reflect underlying physical and analytical properties,

• Conservation of Energy

• Conservation of Mass

• The Comparison Principle

For heat equation, ut = uxx, use L2 norm

d

dt

∫

u2

2
dx =

∫

uut dx =
∫

uuxx dx = −
∫

u2
x dx ≤ 0.

For conservation law ut = −(u2)x,, use L1 norm,

d

dt

∫

u dx =
∫

ut dx = −
∫

u2
x dx ≤ 0.

For nonlinear, degenerate elliptic, ut = F (uxx) with F nondecreasing,

use L∞, or oscillation norm,

d

dt
(maxu − minu) = F (uxx)|max − F (uxx)|min ≤ 0.



Numerical methods reflect the heuristic

Divergence structure elliptic:

Finite element method or Energy method for variational problems.

L2 norms.

Conservation Laws:

finite differences, (node values: cell averages), “finite volume”

L1 norms.

Fully nonlinear degenerate elliptic:

monotone finite difference methods. (node values: function values)

L∞ norms



Conservation Laws and Hamilton-Jacobi Equations

PDE theory for conservation laws preceded theory of viscosity solutions.

The connection between conservation laws and Hamilton-Jacobi equa-

tions in one dimension is given by differentiating,

ut +
1

2
u2

x = 0 (HJ)

vt +
1

2

(

v2
)

x
= 0, where v = ux (Cons Law)

Numerics for cons. laws relies on an entropy preserving flux function.

The flux functions lead to monotone schemes for HJ equations in one

spatial dimension. Extended to higher dimensions.

Monotone schemes suffer from low accuracy.

ENO (Essentially Non-Oscillatory) and WENO (Weighted ENO) schemes

selectively use high order interpolation in smooth regions, monotone flux

function in nonsmooth regions to get better performance.



Results for HJ equations

Improving methods for HJ requires either

• higher order interpolation, or

• better flux functions.

Challenge often

• finding a monotone flux, and

• checking monotonicity of the flux.

Theorems to follow (A.O.) provide:

• simple local structure condition which guarantees monotonicity,

• methods for building monotone schemes.



Remarks on Explicit, Monotone schemes

1. Because for HJ equations, monotone schemes were supplanted by

ENO and WENO, there is a misconception that monotone schemes are

not practical. This is not the case. For second order equations, not only

are they practical, they may be the only convergent methods available.

2. For linear equations, the time step restriction imposed for the CFL

condition may be undesirable. Since it is quite inexpensive to solve a

linear system of equations, implicit methods are often preferred.

However, for nonlinear equations, due to the iterative methods which

must be used to solve nonlinear equations, one implicit time step may

be more costly than thousands of explicit steps. So explicit methods

are preferred.



Math Finance

While valuation models (American options in complete markets) lead

to obstacle problems for linear PDEs, more general valuation problems

lead to linear, but degenerate elliptic PDEs.

Portfolio optimization problems (stochastic control) lead to fully non-

linear Hamilton-Jacobi-Bellman equations

sup
i

{Aiu − fi}

where Ai family of linear elliptic operators.

For these types of equations: only PDE theory available is viscosity

solutions.



Numerics for Math Finance

Most methods in use, e.g. Finite Element methods, are convergent

for the simplest problems, but are not monotone for the more general

nonlinear or degenerate problems.

So in these more general cases the methods do not converge.

Nevertheless, many practitioners use these methods.

In addition, it is desirable to build a comprehensive class of schemes

which can solve the large number of models.

Research program (A.O. and T. Zariphopoulou).

Build a framework of monotone schemes for nonlinear PDEs which

arise in valuation and optimal portfolio problems in math finance.



Motivating Example

Nonmonotone schemes may diverge, even if they are stable in L2.

Toy example of a linear, degenerate elliptic equation.

For this degenerate equation, no convergence in L2.

Require monotonicity for convergence.



Monotonicity for linear maps

This is simpler than monotonicity in general.

Defn: For vectors x, y in Rn, x ≤ y means xi ≤ yi for i = 1, . . . , n

Defn: The linear map M : Rn → Rn is monotone if

x ≤ y implies Mx ≤ My for all x, y

Monotonicity condition (for linear maps):

M is monotone iff Mij ≥ 0 for i, j = 1 . . . , n

Monotonicity for explicit nonlinear schemes: The solution at the

grid point u0 must be a non-decreasing function of its neighbors.

Monotonicity in general: to follow.



Schemes for the degenerate equation

Consider the degenerate elliptic equation in R2

ut = (uxx + 2uxy + uyy).

Use centered difference for uxx, uyy. Obtain three different explicit

schemes, distinguished by the uxy discretization,

SDiag =







1/2
0

1/2






, monotone, ℓ2-stable → converges.

SCentered =







−1/8 1/4 1/8
1/4 0 1/4
1/8 1/4 −1/8






, nonmonotone, ℓ2-stable in → ?

SAnti-Diag =







−1/6 1/3
1/3 0 1/3

1/3 −1/6






, nonmonotone, ℓ2-unstable → blows up .



Numerical experiments

Diagonal scheme: Centered scheme:
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Solution of the centered scheme differs by 1 from the exact solution.

Conclusion:

Consistency and stability (in the ℓ2 norm) does not imply convergence

for this linear, degenerate PDE. Require monotonicity.



Develop a self-consistent, rigorous framework

for monotone difference schemes

Q: What is a finite difference scheme? Can we find a good definition?

Q: For nonlinear schemes, under what conditions can we prove mono-

tonicity (the comparison principle)?

Q: Can we also prove in a self-consistent way, existence and uniqueness

of solutions for the schemes themselves.

The methods should reflect, at the discrete level, the methods used for

the PDEs.



What is a finite difference scheme?

Structure conditions:

Scheme at xi should depend only on ui and the differences ui − uj.

Definition:

A function F : RN → RN , is a finite difference scheme if

F(u)i = F i
(

ui, ui − ui1, . . . , ui − uini

)

(i = 1, . . . , N)

for some functions F i(x0, x1, . . . , xni).
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Discrete Ellipticity

Q: Can we find a structure condition on nonlinear difference schemes

which implies monotonicity (the discrete comparison principle).

A: Yes. (A.O.)

F : RN → RN , is a discretely elliptic finite difference scheme if

F(u)i = F i
(

ui, ui − ui1, . . . , ui − uini

)

(i = 1, . . . , N)

for some nondecreasing functions F i(x0, x1, . . . , xni).

Discrete ellipticity:

local structure condition for the nonlinear difference scheme

which implies the global comparison principle.



Theorem (Monotonicity for schemes (A.O.)). Let F be a strictly

proper, discretely elliptic finite difference scheme. If F(u) ≤ F(v), then

u ≤ v.

0 21

u
1
−v

u
0
−v

u
2
−v

x x x

0
2

1

Proof Suppose u 6≤ v and let i be an index for which

ui − vi = maxj=1,...,N{uj − vj} > 0, so that

ui − uj ≥ vi − vj, j = 1, . . . , N.

F(u)i = F i(ui, ui − u′)

≥ F i(ui, vi − v′), by discretely elliptic

> F i(vi, vi − v′) = F(v)i, by strictly proper

which is a contradiction.



Iterations and Convegence

Definition (Explicit Euler map). Define Sρ : RN → RN or ρ > 0, by

Sρ(u) = u − ρF(u).

It is the explicit Euler discretization, with time step ρ, of the ODE

du

dt
+ F(u) = 0.

For u,v ∈ RN , define u ≤ v if and only if ui ≤ vi, for i = 1, . . . , N.

Definition (Monotonicity). The map S : RN → RN is monotone, if

u ≤ v implies that S(u) ≤ S(v).

Definition (Nonlinear CFL condition). Let F be a Lipschitz contin-

uous, discretely elliptic scheme. The nonlinear Courant-Freidrichs-Lax

condition for the Euler map Sρ is

ρ ≤
1

K
, (CFL)

where K is a Lipschitz constant for the scheme.



Constructive Existence Theorems for schemes

Theorem (Contractivity of the Euler map (AO)). Let F be a Lip-

schitz continuous, discretely elliptic scheme. Then the Euler map is a

contraction in RN equipped with the maximum norm, provided (CFL)

holds. If, in addition, F is uniformly proper, and strict inequality holds

in (CFL), then the Euler map is a strict contraction.

Uniformly proper: mild technical condition, (add dx2ui to each compo-

nent of the equation)



Building Schemes for parabolic equations

The following theorem gives a method for building explicit monotone

schemes for parabolic equations from a discretely elliptic schemes for

the spatial part of the equation.

The CFL condition (which determines a bound on the time step) is

easily determined by calculating the Lipschitz constant of the scheme.

Theorem (Monotonicity of the Euler map (AO)). Let F be a Lip-

schitz continuous, discretely elliptic scheme. Then the Euler map is

monotone provided (CFL) holds.



Method for building schemes

Let Fi : (x, r, p, M) → R i = 1,2

Fi : grid functions → grid functions, i = 1,2

Let g(x, y) be a non-decreasing function, e.g. max or min.

Observation 1 (Crandall-Ishii-Lions) If F1, F2 are degenerate elliptic,

then so is

F = g(F1, F2).

Observation 2 (AO) If F1,F2 are discretely elliptic, then so is

F = g(F1,F2).

This gives a direct method for building schemes for complicated equa-

tions from simpler ones



Examples of Consistent, Monotone Schemes

Use standard finite differences, on uniform grid, explicit in time. (written

for clarity with particular values of dt.)

Heat, upwind advection,

ut − uxx = 0 SA(U) =
UL + UR

2
when dt = dx2/2

ut − ux = 0 SR(U) = UR when dt = dx

ut + ux = 0 SL(U) = UL when dt = dx



Applications

Front Propagation

F = ut − |ux| = max{ut + ux, ut − ux}

S = max {SR,SL}

Convergent, monotone scheme:

S(U) = max{UL, UR} when dt = dx



Obstacle problems

Let

F1 be a discretely elliptic scheme for F (x, u, Du, D2u)

and let

F2(u) = u − g be the constant scheme u − g = 0

The obstacle problem

min(F (x, u, Du, D2u), u − g(x)) = 0

is degenerate elliptic, and the scheme

F = min(F1,F2)

is consistent and discretely elliptic.



Computations



Double obstacle problem
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Solution of the double obstacle problem.



Toy HJB equation

Non-convex Hamilton-Jacobi-Bellman equation.

Stochastic Differential Games.






max(min(L1u, L2u)L3u) = 1 in Ω = {−1 ≤ x, y ≤ 1}

u = f on ∂Ω

where

L1u = uxx + uyy,

L2u = .5uxx + 2uyy,

L3u = .5uxx + uyy

and

f(x, y) = .5max(min(x2 + y2, .5x2 + 2y2), .5x2 + y2)
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Solution and free boundary for the nonconvex, fully nonlinear second

order equation max(min(L1u, L2u)L3u) − 1.



Combustion FBP

These methods can be generalized to other kinds of free boundary

problems.
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Early Exercise Price in Incomplete Markets

The equation for the buyer’s indifference price is (A.O.-T.Zariphopolou)

min(−ht − L + H, h − g(y)) = 0

where L = L(hyy, hy, y, t) is a linear elliptic equation

L(hyy, hy, y, t) =
1

2
a2(y, t)hyy +

(

b(y, t) − ρ
µ

σ
a(y, t)

)

hy

and H = H(hy, y, t) is a nonlinear first order operator

H(hy, y, t) =
1

2
a2(y, t)γ(1 − ρ2)h2

y

and min(L + H, h − g) is an obstacle problem.

• µ, σ drift, volatility of the tradeable asset,

• ρ correlation of the untradeable with tradeable asset,

• b, a drift, volatility of the untradeable asset,

• γ > 0 the risk aversion.



Solution: American Option
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Comparison of European and American options after time 1, with initial

data and Sharpe = 1, a0 = 1, b0 = 0.3, ρ = .1, γ = 1



Mean Curvature and Infinity Laplacian

Motion of Level sets by mean curvature:

Osher-Sethian. hundreds of papers. Search google for “Level Set

method” get thousands of hits.

Applications: interface motion in physics, medical imaging, movie spe-

cial effects, . . .

Infinity Laplacian

‘Best’ solution of classical Whitney-McShane problem of extending a

Lipschitz function.

Also used in image processing for inpainting.

Regularity: one of the last open problems in elliptic PDE,



Mean Curvature: More Background

Motion of Level Sets by Mean Curvature.

Numerics: (selected)

Bence-Merriman-Osher scheme. Alternate heat operator with a thresh-

olding operator.

Phase field approach: singular limit of reaction diffusion eqn. (indirect).

Walkington, finite element method: (direct PDE, but no uniqueness).

M.Crandall-P.L. Lions: direct method. (impractical: requires large sten-

cil, size O(1/dx)).

Theory: Evans-Spruck, Chen-Giga-Goto: existence and uniqueness of

viscosity solutions.



Infinity Laplacian: introduction

(Aronsson, Crandall, Evans, Gariepy)

∆∞u =
1

|Du|2

m
∑

i,j=1

uxixjuxiuxj = 0 (IL)

rewrite as

∆∞u =
d2u

dv2
, where v =

Du

|Du|
.

Appears in the definition of mean curvature:

∆1u = ∆u − ∆∞u, where ∆1 is M.C.

Interpretations

1. Formally limit as p → ∞ of p-Laplacian, which is

min
∫

|Du|p

2. Minimal Lipschitz extension of boundary data: absolute minimizer.

(App: Inpainting, edge enhancement)



Difficulties in building schemes for M.C. and I.L.

Problem: Degeneracy. Even for linear elliptic eqns. may be impossible

to build monotone, second order schemes (Motzkin-Wasow ’53).

Solution: Drop the requirement of second order accuracy.

Problem: Quasilinearity

∆1u =
d2u

dv2
∆∞u =

d2u

dn2
, n =

Du

|Du|
, v = n⊥ in R

2

Naive approach: compute gradient, compute 2nd derivative in the di-

rection perp to gradient (or of gradient in case of IL). Not monotone.

Solution: Find a discrete analog of the underlying principles (variational,

geometric) of the PDE to build a monotone scheme.



Variational interpretation

Given boundary data,

Dirichlet Intergral for Laplacian

∆u = 0 found by min
∫

|Du|2 dx.

Formally

∆1u = 0 found by min
∫

|Du|1 dx,

and

∆∞u = 0 found by min
∫

|Du|∞ dx



Convex optimization problems

finite dimensional analogy of the variational problems

Convex optimization plays an important role in nonlinear difference

schemes.

Compare with the role that solution of linear systems plays for the finite

element method.



Finite Elements in L2

Smooth (∼ quadratic) optimization (classical conditions for minimum)

min
x∈Rn

‖Ax − F‖2
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y1 = 5−2x 

y2 = x/3 

y = (y12+ y22)1/2 



Finite Elements in L∞

With non-smooth (∼ p.w. linear) optimization (more difficult)

min
x∈Rn

‖Ax − F‖∞
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y1 = 5−2x 

y2 = x/3 

y = max(y1,y2) 



Finite differences for points on a circle

Given x1, . . . x2n points equally spaced on a circle of radius dx in R2,

ui = u(xi), u0 = u(0), for u a smooth function.

Write dθ = 1
2n. From Taylor series,

∆u =
1

dx2
(u0 − average(ui)) + O(dx2),

|Du|∆1u =
1

dx2
(u0 − median(ui)) + O(dx2 + dθ),

∆∞u =
1

dx2
(u0 − (maxui + minui)/2) + O(dx2 + dθ).

These discretizations do indeed give monotone schemes,

but the scheme is not fully discretized.



Generalize to non-equidistant neighbors

Motivation: Discretize the minimization
∫

|Du|p, locally.

Continuous case: variational problem.

Discretize: get a convex optimization problem.

At every grid point, solve 1d the convex optimization problem

min
u

n
∑

i=1

∣

∣

∣

∣

∣

u − ui

di

∣

∣

∣

∣

∣

p

Ai, 1 ≤ p < ∞

min
u

n
max
i=1

∣

∣

∣

∣

∣

u − ui

di

∣

∣

∣

∣

∣

, p = ∞

where the ui are the values at the neighbors xi, Ai area of triangle i.



Solution, and consistent scheme

For 1 < p < ∞: minimize using calculus:

min
u





n
∑

i=1

wi|u − ui|p



 gives 0 =
n

∑

i=1

(wi|u − ui|p)′

In particular, for p = 2,

u∗ =
1

n

n
∑

i=1

ui (average).

Non-smooth convex 1d optimization problem for p = 1, p = ∞.

For p = ∞,

Find i, j which max
i,j

|ui − uj|

|di + dj|
, then u∗ =

djui + diuj

di + dj
.

linear interp. of values which maximize the “relaxed discrete gradient”.

For p = 1, u∗ = (weighted) median of the data.

(median: sort values, take average of middle two)



Monotonicity and Consistency

For 1 ≤ p ≤ ∞, if u∗ is solution of problem for a given p,

u − u∗

dx2
gives a monotone scheme.

Furthermore,

∆u = unn + utt =
u∗ − u0

dx2
+ O(dx2)

∆∞ = unn =
u∗ − u0

dx2
+ O(dx2 + dθ),

|Du|∆1 = utt =
u∗ − u0

dx2
+ O(dx2 + dθ),

Observation:

∆u = |Du|∆1 + ∆∞

average ≈ (median + range/2) /2



Numerics for Infinity Laplacian



Details

Theoretical convergence requires that we sent dx → 0 and dθ → 0.

dθ
dθ

dθ}

dx dx

} }

dx

Grids for the 5, 9, and 17 point schemes, and level sets of the cones

for the corresponding schemes.



Boundary data cone:
√

x2 + y2



Triple symmetry



Point disturbance



Numerics for Motion by Mean Curvature

(explain the level set method)



Details

Illustration of the schemes used for nθ = 1,2,3
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Contour plots of the −.02, and .02 contours at times 0, .015, .03, .045.



Surface plot: initial data, and solution at time .03.



End


