# Neumann Eigenfunctions and Brownian Couplings

Krzysztof Burdzy

University of Washington

# Hot Spots Conjecture

Rauch (1974): In Euclidean domains, the second Neumann Laplacian eigenfunction attains its maximum at the boundary.



#### Multidimensional domains



#### Earliest results

- **Kawohl (1985)**: Conjecture holds for cylindrical domains  $(0,1) \times D$
- Bañuelos and B (1999): Conjecture holds for
- (i) some convex planar domains with a line of symmetry, and(ii) "lip" domains.

# Symmetric domains



# Lip domains



### Counterexamples

**B and Werner (1999)**: There exists a domain where the maximum of second Neumann eigenfunction is attained in the interior.

Bass and B (2000): There exists a domain where the maximum and minimum of second Neumann eigenfunction are attained in the interior.

# Counterexample idea



#### Positive direction

Pascu (2002): Conjecture holds for planar convex domains with a line of symmetry.

Atar and B (2004): Conjecture holds for all lip domains.

# Symmetric domains



# Lip domains



### Other papers

Jerison and Nadirashvili (2000) Atar (2001)

. . . . . . . . .

### Open problems

(i) Hot spots conjecture for convex domains.

(ii) Hot spots conjecture for simply connected planar domains.

# Counterexample with one hole



(Work in progress)

#### Thin domain families

The family of **symmetric** domains is nowhere dense in the family of all convex domains.

The same holds for **lip** domains.

# Large family of convex domains

Theorem (B, work in progress):
There exists a family of planar convex domains with a non-empty interior such that the hot spots conjecture holds for all domains in this family.

# Eigenvalue multiplicity



# Maximum eigenvalue multiplicity

#### Nadirashvili (1986, 1988):

The maximum multiplicity of the second Neumann eigenvalue for a simply connected planar domain is 2.

### Long convex domains

**Bañuelos and B (1999)**: If D is convex and diameter/width is greater than 3.07 then the second eigenvalue is simple.



## Convex domains - conjecture

**Bañuelos and B (1999)**: (Conjecture) If D is convex and diameter/width is greater than 1.41 then the second eigenvalue is simple.



#### Points outside nodal lines

Bañuelos and B (1999): If for some point the nodal (zero) line for any second eigenfunction does not pass through this point, then the second eigenvalue is simple.

#### Bottleneck domains



# Bottleneck domains (idea of proof)



### Lip domains

Atar and B (2004): Second Neumann eigenvalue is simple in lip domains (except squares).



# Lip domains (idea of proof)



### Probabilistic approach

Stationary distribution is unique



# Second Neumann eigenfunction is unique

(work in progress)

# Probabilistic approach (idea of proof)



# Nodal line location Motivation



Research on hot spots problem:

Bañuelos and B (1999)

Jerison and Nadirashvili (2000)

Pascu (2002)

# Nodal line location Old results

- (i) Rectangles, ellipses, etc.
- (ii) Domains with symmetry
- (iii) **Jerison (2000)** Long and thin domains

(Melas (1992): Dirichlet nodal lines)

# Nodal lines and couplings

Atar and B (2002): Consider a coupling of reflected Brownian motions. If the particles cannot couple in a subset of the domain then this subset is too small to contain a nodal domain.

# Nodal lines and couplings (idea of proof)

Coupling point cannot lie to the left of the green line



# Obtuse triangles



# Brownian couplings



### Monotone couplings

#### B and Kendall (2000)



Synchronous coupling

### Mirror couplings: construction

easpage equal

Wang (1994)

B and Kendall (2000): reflection

on a single line

Atar and B (2004): piecewise smooth domains

# Synchronous couplings via unique strong solutions to Skorohod equation

$$X_{t} = x + B_{t} + \int_{0}^{t} N(X_{s}) dL_{t}^{X}$$

$$Y_{t} = y + B_{t} + \int_{0}^{t} N(Y_{s}) dL_{t}^{Y}$$

Lions and Sznitman (1984) :  $C^2$  - domains

# Skorohod equation: unique strong solutions

$$X_t = x + B_t + \int_0^t N(X_s) dL_t^X$$

Bass, B and Chen (2004): Unique strong solutions exist in planar Lipschitz domains with Lipschitz constant less than 1.



# Skorohod equation - unique strong solutions : idea of proof

(i) Weak uniqueness for  $(B_t, X_t)$  (ii) Strong existence (iii) Start with RBM's with smooth reflection vector fields (**Dupuis and Ishii (1993)**) (iv) Use monotonicity to pass to the limit

# Convergence of synchronous couplings: motivation

**B and Kendall (2000)**: "efficient" couplings; rate of coupling = second Neumann eigenvalue

# Convergence of synchronous couplings

B and Chen (2002): Synchronous couplings converge in (i) Polygonal domains



(ii)Lip domains



## Synchronous couplings in smooth domains

B, Chen and Jones (work in progress)

If 
$$\Lambda(D) > 0$$
 then, a.s.,

$$\lim_{t \to \infty} \frac{\log dist(X_t, Y_t)}{t} = -\frac{\Lambda(D)}{2|D|}$$

#### Lyapunov exponent

Angle between tangent lines -  $\alpha(x, y)$ Curvature - v(x)Harmonic measure -  $\chi_x(dy)$ 

$$\Lambda(D) = \int_{\partial D} v(x) dx + \iint_{\partial D \times \partial D} \log \cos \alpha(x, y) | \chi_x(dy) dx$$

By Gauss-Bonnet Theorem,  $(1/2\pi)\int_{\partial D}v(x)dx=1$  - number of holes

#### Domains with few holes

**Corollary**: If a smooth domain has at most one hole then synchronous couplings converge.

### Lyapunov exponent Open problems

**Lemma.** If D is the exterior of a disc then  $\Lambda(D)=0$ **Conjecture.** (numerical) If D is the exterior of an ellipse then  $\Lambda(D)=0$ **Open problem**. Are there any bounded domains D with  $\Lambda(D)<0$ ?

### Shy couplings

 $X_t, Y_t$  - two copies of a Markov process defined on the same space

Definition. Shy coupling:

$$\inf_{0 < t < \infty} dist(X_t, Y_t) > 0, a.s.$$

#### Shy couplings of RBM's

Benjamini, B and Chen (in progress): There is no shy coupling of reflected Brownian motions in a convex bounded Euclidean domain.

### Shy couplings in annuli



### Shy couplings – open problem



### Rigid couplings

Benjamini, B and Chen (in progress): There exists a coupling of Brownian motions in the plane such that

$$dist(X_t, Y_t) = \sqrt{t}$$