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Two-Stage Adaptive Procedures

• The design of Stage II depends on unblinded Stage I
data.

• Stage II sample size and critical value are functions
of Stage I data.

• Other modifications are possible.

• All the actions to be taken at the end of Stage I are
determined prior to Stage I.
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Prespecification of the Stage II

Without prespecification of the actions

• The sample size behavior is unknown.
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Prespecification of the Stage II

Without prespecification of the actions

• The sample size behavior is unknown.

• The unconditional power cannot be specified.

• The Type I error cannot be rigorously defined.
- Liu, Proschan and Pledger (2002)
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Motivating Example

Lan and Trost’s procedure
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Motivating Example

Lan and Trost’s procedure

Lan and Trost (1996) give a procedure in which the results
from Stage I are used to determine the sample size for
Stage II.
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Example - Background

Consider testing

H0 : µt − µc ≤ 0

H1 : µt − µc > 0
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Example - Background

Consider testing

H0 : µt − µc ≤ 0

H1 : µt − µc > 0

Assume that σ = 4

α = .025 and ρ ≡ 1 − β = .85 at µt − µc = 1

Then conventional single-stage procedure’s sample size is
N = 288 from each group.
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Example - CP

In Stage I, a sample of size n1 = 0.4 × N = 115 from
each group is taken.
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Example - CP

In Stage I, a sample of size n1 = 0.4 × N = 115 from
each group is taken.

Calculate CP , the conditional probability of rejecting H0 in
Stage II under the trend of Stage I (i.e. X̄1t − X̄1c) after
N − n1 = 173 more observations in Stage II.
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Example - CP

In Stage I, a sample of size n1 = 0.4 × N = 115 from
each group is taken.

Calculate CP , the conditional probability of rejecting H0 in
Stage II under the trend of Stage I (i.e. X̄1t − X̄1c) after
N − n1 = 173 more observations in Stage II.

Their procedure’s design is based on CP
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Example - Stage I Decision Rule

• If CP is less than .05, stop the trial at the end of Stage
I for futility.
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• If CP is less than .05, stop the trial at the end of Stage
I for futility.
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the conditional probability of rejecting H0 at the end of
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Example - Stage I Decision Rule

• If CP is less than .05, stop the trial at the end of Stage
I for futility.

• If CP is greater than .65, continue with the original
sample size, i.e., n2 = 173.

• If CP is between .05 and .65, extend the study so that
the conditional probability of rejecting H0 at the end of
Stage II under the Stage I results is .65.

CP
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Example - Characteristics

Characteristics of the resulting design

P[Type I Error] = P[Reject H0 under H0] = .024

Power = P[Reject H0 under H1] = .877

Sample size

– p.



In the Literature

There has been much interest in the field of two-stage
adaptive procedures.

• Bauer and Köhne (1994)

• Proschan and Hunsberger (1995)

• Lan and Trost (1997)

• Lehmacher and Wassmer (1999)

• Liu and Chi (2001)

– p. 1



The Main Objectives

The two main objectives of our calculus are :

– p. 1



The Main Objectives

The two main objectives of our calculus are :

1. to put into perspective previously proposed methods.

– p. 1



The Main Objectives

The two main objectives of our calculus are :

1. to put into perspective previously proposed methods.

More importantly,

2. to facilitate the design of two-stage adaptive procedures.

– p. 1



The Main Objectives

The two main objectives of our calculus are :

1. to put into perspective previously proposed methods.

More importantly,

2. to facilitate the design of two-stage adaptive procedures.

Back to Index
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Calculus
Hypotheses of interest:

H0 : µt − µc ≤ ∆0

H1 : µt − µc > ∆0
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Calculus
Hypotheses of interest:

H0 : µt − µc ≤ ∆0

H1 : µt − µc > ∆0

α = P[Type I error]
β = P[Type II error] at ∆1.
ρ = 1 − β.

Suppose that

Xt ∼ Normal(µt, σ2)

Xc ∼ Normal(µc, σ2)
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Stage I

• Take a sample of size n1 from the treatment and
control groups.
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Stage I

• Take a sample of size n1 from the treatment and
control groups.

• Test Statistic is

Y1 =
X̄1t − X̄1c√

2 σ

We use the notation, ξ =
µt − µc√

2 σ
.

Flowchart
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Stage II

• Take a sample of size n2(y1) from the treatment and
control groups.
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Stage II

• Take a sample of size n2(y1) from the treatment and
control groups.

• Test Statistic is

Y2 =
X̄2t − X̄2c√

2 σ
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Stage II

• Take a sample of size n2(y1) from the treatment and
control groups.

• Test Statistic is

Y2 =
X̄2t − X̄2c√

2 σ

Flowchart
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Summary
• Stage I

• Sample size · · · n1

• Critical values · · · k1 and k2

• Stage II

• Sample size function · · · n2(y1)

• Critical value function · · · w(y1)
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Stage I Error Probabilities

• α1 = P[Reject H0 in Stage I under H0]

• β1 = P[Accept H0 in Stage I under H1]
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Stage I Error Probabilities

• α1 = P[Reject H0 in Stage I under H0]

• β1 = P[Accept H0 in Stage I under H1]

• We can write α1 as a function of n1 and k2.

• We can write β1 as a function of n1 and k1.
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Stage I Components

Stage I is characterized by the following 5 “specification
components” :

α1, β1, n1, k1, k2.
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Stage I Components

Stage I is characterized by the following 5 “specification
components” :

α1, β1, n1, k1, k2.

These specification components need to satisfy :

• α1 = Pξ0[Y1 > k2] = 1 − Φ[
√

n1(k2 − ξ0)]

• β1 = Pξ1[Y1 < k1] = Φ[
√

n1(k1 − ξ1)]
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√
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If 3 components are specified, we can obtain the other 2
using the above relationships.
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Stage I Components

• α1 = 1 − Φ[
√

n1(k2 − ξ0)]

• β1 = Φ[
√

n1(k1 − ξ1)]

If 3 components are specified, we can obtain the other 2
using the above relationships.

At least 1 component needs to come from α1 group and β1

group.
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“Conditional Power Functions”

For Stage II, define the “conditional power functions” as :

A(y1, ξ) = Pξ[Reject H0 in Stage II | Y1 = y1 ]
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“Conditional Power Functions”

For Stage II, define the “conditional power functions” as :

A(y1, ξ) = Pξ[Reject H0 in Stage II | Y1 = y1 ]

• A(y1, ξ0) = Conditional Type I error rate

• A(y1, ξ1) = Conditional power at the original alternative

ξ can depend on y1. e.g., ξ(y1) = y1

• A(y1, y1) = Conditional power at y1, an estimate of ξ
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Stage II Components

Stage II is characterized by the following 4 “specification
components” :

A(y1, ξ0), A(y1, ξ1), n2(y1), w(y1).
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Stage II Components

Stage II is characterized by the following 4 “specification
components” :

A(y1, ξ0), A(y1, ξ1), n2(y1), w(y1).

• A(y1, ξ0) = 1 − Φ
[√

n2(y1)(w(y1) − ξ0)
]

• A(y1, ξ1) = 1 − Φ
[√

n2(y1)(w(y1) − ξ1)
]
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Stage II Components

Stage II is characterized by the following 4 “specification
components” :

A(y1, ξ0), A(y1, ξ1), n2(y1), w(y1).

• A(y1, ξ0) = 1 − Φ
[√

n2(y1)(w(y1) − ξ0)
]

• A(y1, ξ1) = 1 − Φ
[√

n2(y1)(w(y1) − ξ1)
]

• 2 components from these 4 are sufficient to determine
the other 2.
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Type I and Type II Error Rates

To control Type I error rate and to specify power, we need

α2 ≡ α − α1 =

∫ k2

k1

A(y1, ξ0)gξ0(y1) dy1

ρ2 ≡ ρ − ρ1 =

∫ k2

k1

A(y1, ξ1)gξ1(y1) dy1

where gξ(y1) is the pdf of Normal(ξ, 1/n1).
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Components

A two-stage adaptive procedure is characterized by the
following 9 components:

• Stage I
α1, β1, n1, k1, k2

• Stage II
A(y1, ξ0), A(y1, ξ1), n2(y1), w(y1)

Instead of A(y1, ξ0) and A(y1, ξ1), we can choose any
A(y1, ξ) at two distinct ξ’s.

Back to Index
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Example

In this example, we show that

• a fairly complicated procedure can be placed under
our formulation.
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Example

In this example, we show that

• a fairly complicated procedure can be placed under
our formulation.

• our framework allows manipulation of design
parameters to control many aspects of the design,
such as the Type I error rate, Type II error rate (power),
maximum sample size and so on.
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Lan & Trost’s Procedure

H0 : µt − µc ≤ 0

H1 : µt − µc > 0

• σ = 4

• α = .025

• Power = .85 at µt − µc = 1. (ξ1 = .1768)

Conventional single-stage design’s sample size is
N = 288 from each group.

A(y1, y1)
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Stage I Components

• n1 = 115

• k1 satisfies CP (k1) = .05. ⇒ k1 = .0405

• k2 = ∞
• (κ satisfies CP (κ) = .65. ⇒ κ = .1332)
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Stage I Components

• n1 = 115

• k1 satisfies CP (k1) = .05. ⇒ k1 = .0405

• k2 = ∞
• (κ satisfies CP (κ) = .65. ⇒ κ = .1332)

We can calculate the remaining 2 components, α1 and β1

for Stage I.

{ α1 = 0, β1 = .072, n1 = 115, k1 = .0405, k2 = ∞ }
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Stage II Components

• Stage II is divided into “extension” and “continuation”
regions based on y1.

• Using A(y1, y1) = CP (y1) and the facts that the
critical value is constant in terms of z-value and that
n2(y1) is constant in the “continuation” region, we can
obtain A(y1, ξ), n2(y1) and w(y1) for the entire range
of y1 in (k1, ∞).

A(y1, ξ) and sample size
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Problems of Lan & Trost’s Design

• Sample size
max(n2(y1)) = 3223.
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Problems of Lan & Trost’s Design

• Sample size
max(n2(y1)) = 3223.

• A(y1, ξ1) is not monotone.

Under H1,
conditional power is virtually 1 if y1 = .0403.
conditional power is about .8 if y1 = .1332.
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Type I Error and Power

Our framework permits numerical integration to find :

Type I Error Rate =

∫ ∞

−∞
A(y1, ξ0)gξ0(y1) dy1 = .024

Power at ξ1 =

∫ ∞

−∞
A(y1, ξ1)gξ1(y1) dy1 = .877
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Type I Error and Power

Our framework permits numerical integration to find :

Type I Error Rate =

∫ ∞

−∞
A(y1, ξ0)gξ0(y1) dy1 = .024

Power at ξ1 =

∫ ∞

−∞
A(y1, ξ1)gξ1(y1) dy1 = .877

Lan and Trost were unable to obtain the above probabilities
through integration. Their results are based on simulation.
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Modification

Lan and Trost’s Design is modified using our calculus.

Our framework allows to design a procedure with the
following characteristics:

• α = .024

• power = .877 at ξ = ξ1 = .1768

→ N = 337.

– p. 3



Sample Size Restriction

Our framework also permits specification of the minimum
and maximum sample size.

• n1 + max(n2(y1)) = 442

• n1 + min(n2(y1)) = 317

The total sample size for Stages I and II when continuing to
Stage II is between N = 317 and N × 1.4 = 442.
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Stage I Components

We choose :

n1 = 115 (same as the original design)
k1 = .0405 (same as the original design)
α1 = .005
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Stage I Components

We choose :

n1 = 115 (same as the original design)
k1 = .0405 (same as the original design)
α1 = .005

Then using our framework we can obtain the two
remaining components, β1 and k2.

{α1 = .005, β1 = .072, n1 = 115, k1 = .0405, k2 = .2406}
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Stage II Components

We choose :

A(y1, ξ0) = .02 + 6.93(y1 − k1)
2

This satisfies α2 = .020 =
∫ k2

k1
A(y1, ξ0)gξ0(y1) dy1.

A(y1, ξ1) = .925

This satisfies ρ2 = .602 =
∫ k2

k1
A(y1, ξ1)gξ1(y1) dy1.

A(y1, ξ) and sample size
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Stage II Components

We choose :

A(y1, ξ0) = .02 + 6.93(y1 − k1)
2

The same as before

A(y1, ξ1) = .89 + 2.4(y1 − k1)
2

A(y1, ξ) and sample size
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Stage II Components

Our framework allows modification of the sample size
function directly so that it does not exceed the maximum
and it does not increase.

Sample size
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Stage II Components

Our framework allows modification of the sample size
function directly so that it does not exceed the maximum
and it does not increase.

Sample size

We keep A(y1, ξ0) = .02 + 6.93(y1 − k1)
2 unchanged.

Then with this new n2(y1) function, A(y1, ξ1) and w(y1)

are modified.

A(y1, ξ)
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Comparison of the Two Designs
the Original Lan and Trost’s Design

Stage I Stage II

µ Accept Continue Reject Reject Power n1 + E[n2(Y1)]

0.00 .668 .332 0 .024 .024 397.4

0.25 .484 .516 0 .178 .178 476.6

0.50 .304 .696 0 .457 .457 501.1

0.75 .162 .838 0 .706 .706 468.7

1.00 .072 .928 0 .877 .877 407.7

1.25 .026 .974 0 .961 .961 350.8

the Modified Design

Stage I Stage II

µ Accept Continue Reject Reject Power n1 + E[n2(Y1)]

0.00 .668 .327 .005 .019 .024 208.1

0.25 .484 .498 .018 .103 .121 251.6

0.50 .304 .645 .051 .308 .359 284.4

0.75 .162 .715 .123 .542 .665 294.3

1.00 .072 .681 .247 .630 .877 278.0

1.25 .026 .557 .417 .548 .965 242.7

Back to Index – p. 3



Significant Design Parameters

We conducted a computational experiment to see which
design components have significant influence on the
characteristics of the resulting design.
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Significant Design Parameters

We conducted a computational experiment to see which
design components have significant influence on the
characteristics of the resulting design.

What enabled us to conduct this study is our ability to
place many two-stage adaptive procedures under one
formulation indexed by the following design parameters:
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Design Parameters

• α1

• β1

• f , the ratio of n1 to N

• A(y1, ξ0)

• A(y1, ξ1)

Also various σ’s are included in the study.
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Performance Characteristics

Different combinations of the design parameters yield
designs with different performance characteristics (power
and expected sample sizes).
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Performance Characteristics

Different combinations of the design parameters yield
designs with different performance characteristics (power
and expected sample sizes).

A design parameter that demonstrates relatively
substantial variability in the “response surface” is
considered influential and thus important.
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Summary of the Results

• α1, β1, f , f × α1 and f × β1 explain most of variation
in power and expected sample sizes.
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Summary of the Results

• α1, β1, f , f × α1 and f × β1 explain most of variation
in power and expected sample sizes.

• A small α1 and a large β1 seem to perform well.

• When f is large, there are very small differences in the
performance characteristics for different choices of α1

and β1.

• A(y1, ξ0) and A(y1, ξ1) are both insignificant.

Back to Index
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Summary

Our calculus for two-stage adaptive procedures

• enables us to design a two-stage adaptive procedure with

specific design characteristics.
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Summary

Our calculus for two-stage adaptive procedures

• enables us to design a two-stage adaptive procedure with

specific design characteristics.

• Computer program to manipulate specification

components

• puts into perspective previously proposed procedures.

• Two-Stage Group Sequential Procedure

• Comparison of designs to assess the importance of each

specification component on the resulting design
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• Planned unequal sample sizes
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Extensions

• Unequal Sample Sizes

• Planned unequal sample sizes

• Missing observations

• Unknown Variance

• Switching study objectives between superiority and
noninferiority
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Future Research

• Inference (e.g., unbiased estimator and confidence
interval)
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Future Research

• Inference (e.g., unbiased estimator and confidence
interval)

• Multi-stage procedure
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Future Research

• Inference (e.g., unbiased estimator and confidence
interval)

• Multi-stage procedure

Back to Index
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Group Sequential Procedures

A two-stage group sequential procedure can be placed
under the same formulation using our calculus by noticing :

• The Stage II sample size, n2, does not vary with y1.
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Group Sequential Procedures

A two-stage group sequential procedure can be placed
under the same formulation using our calculus by noticing :

• The Stage II sample size, n2, does not vary with y1.

• The critical value, zc, for the standardized
combined-stage statistic does not vary with y1.
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Group Sequential Procedures

A two-stage group sequential procedure can be placed
under the same formulation using our calculus by noticing :

• The Stage II sample size, n2, does not vary with y1.

• The critical value, zc, for the standardized
combined-stage statistic does not vary with y1.

Jennison and Turnbull (1999) give the Stage I and II critical
values in terms of Z.
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Specification Components

• Stage I

{ n1, k1, k2 }

• Stage II

{ n2(y1), w(y1) }
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Example

Suppose that µ0 = 0, µ1 = 1, σ = 4, α = .05, β = .10.

• For Stage I, n1 = 143, za = .2298 and zb = 2.343.

• For Stage II, n2 = 143 and zc = 1.657.
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• For Stage I, n1 = 143, za = .2298 and zb = 2.343.

• For Stage II, n2 = 143 and zc = 1.657.

• For Stage I, n1 = 143, k1 = .0192, k2 = .1959.

• For Stage II, n2 = 143, w(y1) = .1960 − y1.
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Example

Suppose that µ0 = 0, µ1 = 1, σ = 4, α = .05, β = .10.

• For Stage I, n1 = 143, za = .2298 and zb = 2.343.

• For Stage II, n2 = 143 and zc = 1.657.

• For Stage I, n1 = 143, k1 = .0192, k2 = .1959.

• For Stage II, n2 = 143, w(y1) = .1960 − y1.

A(y1, ξ0), A(y1, ξ1) for Group Sequential Procedure
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Total Sample Size
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Flowchart
Stage I

Sample size = n1

k1 k2

Accept H0 Reject H0

Stop
Continue to

Stop

====
Stage II

====

⇓
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Flowchart
Stage I
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