A Calculus For Design Of Two-Stage Adaptive Procedures

Tatsuki Koyama, Ph.D.

Tatsuki.Koyama@Vanderbilt.Edu
Department of Biostatistics
Vanderbilt University Medical Center

> Leon J. Gleser, Ph.D. Allan R. Sampson, Ph.D.

Department of Statistics University of Pittsburgh

Index

1. Introduction
2. Calculus
3. Example
4. Significant Design Parameters
5. Summary

Group Sequential Procedures

Two-Stage Adaptive Procedures

- The design of Stage II depends on unblinded Stage I data.

Two-Stage Adaptive Procedures

- The design of Stage II depends on unblinded Stage I data.
- Stage II sample size and critical value are functions of Stage I data.

Two-Stage Adaptive Procedures

- The design of Stage II depends on unblinded Stage I data.
- Stage II sample size and critical value are functions of Stage I data.
- Other modifications are possible.

Two-Stage Adaptive Procedures

- The design of Stage II depends on unblinded Stage I data.
- Stage II sample size and critical value are functions of Stage I data.
- Other modifications are possible.
- All the actions to be taken at the end of Stage I are determined prior to Stage I.

Prespecification of the Stage II

Without prespecification of the actions

- The sample size behavior is unknown.

Prespecification of the Stage II

Without prespecification of the actions

- The sample size behavior is unknown.
- The unconditional power cannot be specified.

Prespecification of the Stage II

Without prespecification of the actions

- The sample size behavior is unknown.
- The unconditional power cannot be specified.
- The Type I error cannot be rigorously defined.
- Liu, Proschan and Pledger (2002)

Motivating Example

Lan and Trost's procedure

Motivating Example

Lan and Trost's procedure
Lan and Trost (1996) give a procedure in which the results from Stage I are used to determine the sample size for Stage II.

Example - Background

Consider testing

$$
\begin{aligned}
& H_{0}: \mu_{t}-\mu_{c} \leq 0 \\
& H_{1}: \mu_{t}-\mu_{c}>0
\end{aligned}
$$

Example - Background

Consider testing

$$
\begin{aligned}
& H_{0}: \mu_{t}-\mu_{c} \leq 0 \\
& H_{1}: \mu_{t}-\mu_{c}>0
\end{aligned}
$$

Assume that $\sigma=4$

Example - Background

Consider testing

$$
\begin{aligned}
& H_{0}: \mu_{t}-\mu_{c} \leq 0 \\
& H_{1}: \mu_{t}-\mu_{c}>0
\end{aligned}
$$

Assume that $\sigma=4$
$\alpha=.025$ and $\rho \equiv 1-\beta=.85$ at $\mu_{t}-\mu_{c}=1$

Example - Background

Consider testing

$$
\begin{aligned}
& H_{0}: \mu_{t}-\mu_{c} \leq 0 \\
& H_{1}: \mu_{t}-\mu_{c}>0
\end{aligned}
$$

Assume that $\sigma=4$
$\alpha=.025$ and $\rho \equiv 1-\beta=.85$ at $\mu_{t}-\mu_{c}=1$
Then conventional single-stage procedure's sample size is $N=288$ from each group.

Example - $\boldsymbol{C P}$

In Stage I, a sample of size $n_{1}=0.4 \times N=115$ from each group is taken.

Example - $\boldsymbol{C P}$

In Stage I, a sample of size $n_{1}=0.4 \times N=115$ from each group is taken.

Calculate $C P$, the conditional probability of rejecting H_{0} in Stage II under the trend of Stage I (i.e. $\bar{X}_{1 t}-\bar{X}_{1 c}$) after $N-n_{1}=173$ more observations in Stage II.

Example - $\boldsymbol{C P}$

In Stage I, a sample of size $n_{1}=0.4 \times N=115$ from each group is taken.

Calculate $C P$, the conditional probability of rejecting H_{0} in Stage II under the trend of Stage I (i.e. $\bar{X}_{1 t}-\bar{X}_{1 c}$) after $N-n_{1}=173$ more observations in Stage II.

Their procedure's design is based on $\underline{C P}$

Example - Stage I Decision Rule

- If $C P$ is less than .05 , stop the trial at the end of Stage I for futility.

Example - Stage I Decision Rule

- If $C P$ is less than .05 , stop the trial at the end of Stage I for futility.
- If $C P$ is greater than .65 , continue with the original sample size, i.e., $n_{2}=173$.

Example - Stage I Decision Rule

- If $C P$ is less than .05 , stop the trial at the end of Stage I for futility.
- If $C P$ is greater than .65 , continue with the original sample size, i.e., $n_{2}=173$.
- If $C P$ is between .05 and .65 , extend the study so that the conditional probability of rejecting H_{0} at the end of Stage II under the Stage I results is $\mathbf{. 6 5}$.

Example - Stage I Decision Rule

- If $C P$ is less than .05 , stop the trial at the end of Stage I for futility.
- If $C P$ is greater than .65 , continue with the original sample size, i.e., $n_{2}=173$.
- If $C P$ is between .05 and .65 , extend the study so that the conditional probability of rejecting H_{0} at the end of Stage II under the Stage I results is $\mathbf{. 6 5}$.
$C P$

Example - Characteristics

Characteristics of the resulting design

$$
\text { P[Type I Error] } \left.=\text { P[Reject } \boldsymbol{H}_{0} \text { under } \boldsymbol{H}_{0}\right]=.024
$$

$$
\text { Power } \left.=\text { P[Reject } \boldsymbol{H}_{0} \text { under } \boldsymbol{H}_{1}\right]=.877
$$

Sample size

In the Literature

There has been much interest in the field of two-stage adaptive procedures.

- Bauer and Köhne (1994)
- Proschan and Hunsberger (1995)
- Lan and Trost (1997)
- Lehmacher and Wassmer (1999)
- Liu and Chi (2001)

The Main Objectives

The two main objectives of our calculus are :

The Main Objectives

The two main objectives of our calculus are :

1. to put into perspective previously proposed methods.

The Main Objectives

The two main objectives of our calculus are :

1. to put into perspective previously proposed methods.

More importantly,
2. to facilitate the design of two-stage adaptive procedures.

The Main Objectives

The two main objectives of our calculus are :

1. to put into perspective previously proposed methods.

More importantly,
2. to facilitate the design of two-stage adaptive procedures.

Back to Index

Calculus

Hypotheses of interest:

$$
\begin{aligned}
& H_{0}: \mu_{t}-\mu_{c} \leq \Delta_{0} \\
& H_{1}: \mu_{t}-\mu_{c}>\Delta_{0}
\end{aligned}
$$

Calculus

Hypotheses of interest:

$$
\begin{aligned}
& H_{0}: \mu_{t}-\mu_{c} \leq \Delta_{0} \\
& H_{1}: \mu_{t}-\mu_{c}>\Delta_{0}
\end{aligned}
$$

$\alpha=$ P[Type I error]
$\beta=$ P[Type II error] at Δ_{1}.
$\rho=1-\beta$.

Calculus

Hypotheses of interest:

$$
\begin{aligned}
& H_{0}: \mu_{t}-\mu_{c} \leq \Delta_{0} \\
& H_{1}: \mu_{t}-\mu_{c}>\Delta_{0}
\end{aligned}
$$

$\alpha=$ P[Type I error]
$\boldsymbol{\beta}=$ P[Type II error] at Δ_{1}.
$\rho=1-\beta$.
Suppose that
$X_{t} \sim \operatorname{Normal}\left(\mu_{t}, \sigma^{2}\right)$
$X_{c} \sim \operatorname{Normal}\left(\mu_{c}, \sigma^{2}\right)$

Stage I

- Take a sample of size n_{1} from the treatment and control groups.

Stage I

- Take a sample of size n_{1} from the treatment and control groups.
- Test Statistic is

$$
Y_{1}=\frac{\bar{X}_{1 t}-\bar{X}_{1 c}}{\sqrt{2} \sigma}
$$

Stage I

- Take a sample of size n_{1} from the treatment and control groups.
- Test Statistic is

$$
Y_{1}=\frac{\bar{X}_{1 t}-\bar{X}_{1 c}}{\sqrt{2} \sigma}
$$

We use the notation, $\xi=\frac{\mu_{t}-\mu_{c}}{\sqrt{2} \sigma}$.
Flowchart

Stage II

- Take a sample of size $n_{2}\left(y_{1}\right)$ from the treatment and control groups.

Stage II

- Take a sample of size $n_{2}\left(y_{1}\right)$ from the treatment and control groups.
- Test Statistic is

$$
Y_{2}=\frac{\bar{X}_{2 t}-\bar{X}_{2 c}}{\sqrt{2} \sigma}
$$

Stage II

- Take a sample of size $n_{2}\left(y_{1}\right)$ from the treatment and control groups.
- Test Statistic is

$$
Y_{2}=\frac{\bar{X}_{2 t}-\bar{X}_{2 c}}{\sqrt{2} \sigma}
$$

Flowchart

Summary

- Stage I
- Sample size . . . n_{1}
- Critical values $\cdots k_{1}$ and k_{2}
- Stage II
- Sample size function $\cdots n_{2}\left(y_{1}\right)$
- Critical value function $\cdots w\left(y_{1}\right)$

Stage I Error Probabilities

- $\alpha_{1}=$ P[Reject H_{0} in Stage I under H_{0}]
- $\boldsymbol{\beta}_{1}=\mathrm{P}\left[\right.$ Accept \boldsymbol{H}_{0} in Stage I under $\left.\boldsymbol{H}_{1}\right]$

Stage I Error Probabilities

- $\alpha_{1}=$ P[Reject $\boldsymbol{H}_{\mathbf{0}}$ in Stage I under $\boldsymbol{H}_{\mathbf{0}}$]
- $\boldsymbol{\beta}_{1}=\mathrm{P}\left[\right.$ Accept \boldsymbol{H}_{0} in Stage I under \boldsymbol{H}_{1}]
- We can write α_{1} as a function of n_{1} and k_{2}.
- We can write β_{1} as a function of n_{1} and k_{1}.

Stage I Components

Stage I is characterized by the following 5 "specification components" :

$$
\alpha_{1}, \beta_{1}, n_{1}, k_{1}, k_{2} .
$$

Stage I Components

Stage I is characterized by the following 5 "specification components" :

$$
\alpha_{1}, \beta_{1}, n_{1}, k_{1}, k_{2} .
$$

These specification components need to satisfy :

$$
\begin{aligned}
& \text { - } \alpha_{1}=P_{\xi_{0}}\left[Y_{1}>k_{2}\right]=1-\Phi\left[\sqrt{n_{1}}\left(k_{2}-\xi_{0}\right)\right] \\
& \text { - } \beta_{1}=P_{\xi_{1}}\left[Y_{1}<k_{1}\right]=\Phi\left[\sqrt{n_{1}}\left(k_{1}-\xi_{1}\right)\right]
\end{aligned}
$$

Stage I Components

- $\alpha_{1}=1-\Phi\left[\sqrt{n_{1}}\left(k_{2}-\xi_{0}\right)\right]$
- $\beta_{1}=\Phi\left[\sqrt{n_{1}}\left(k_{1}-\xi_{1}\right)\right]$

Stage I Components

- $\alpha_{1}=1-\Phi\left[\sqrt{n_{1}}\left(k_{2}-\xi_{0}\right)\right]$
- $\beta_{1}=\Phi\left[\sqrt{n_{1}}\left(k_{1}-\xi_{1}\right)\right]$

If 3 components are specified, we can obtain the other 2 using the above relationships.

Stage I Components

- $\alpha_{1}=1-\Phi\left[\sqrt{n_{1}}\left(k_{2}-\xi_{0}\right)\right]$
- $\beta_{1}=\Phi\left[\sqrt{n_{1}}\left(k_{1}-\xi_{1}\right)\right]$

If 3 components are specified, we can obtain the other 2 using the above relationships.

At least 1 component needs to come from α_{1} group and β_{1} group.

"Conditional Power Functions"

For Stage II, define the "conditional power functions" as :

$$
A\left(y_{1}, \xi\right)=P_{\xi}\left[\text { Reject } H_{0} \text { in Stage II } \mid Y_{1}=y_{1}\right]
$$

"Conditional Power Functions"

For Stage II, define the "conditional power functions" as :

$$
A\left(y_{1}, \xi\right)=P_{\xi}\left[\text { Reject } H_{0} \text { in Stage II } \mid Y_{1}=y_{1}\right]
$$

- $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \xi_{0}\right)=$ Conditional Type I error rate
- $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \xi_{1}\right)=$ Conditional power at the original alternative

"Conditional Power Functions"

For Stage II, define the "conditional power functions" as :

$$
A\left(y_{1}, \xi\right)=P_{\xi}\left[\text { Reject } H_{0} \text { in Stage II } \mid Y_{1}=y_{1}\right]
$$

- $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \boldsymbol{\xi}_{0}\right)=$ Conditional Type I error rate
- $A\left(y_{1}, \xi_{1}\right)=$ Conditional power at the original alternative
$\boldsymbol{\xi}$ can depend on \boldsymbol{y}_{1}. e.g., $\boldsymbol{\xi}\left(\boldsymbol{y}_{1}\right)=\boldsymbol{y}_{1}$
- $\boldsymbol{A}\left(y_{1}, y_{1}\right)=$ Conditional power at y_{1}, an estimate of ξ

Stage II Components

Stage II is characterized by the following 4 "specification components" :

$$
A\left(y_{1}, \xi_{0}\right), A\left(y_{1}, \xi_{1}\right), n_{2}\left(y_{1}\right), w\left(y_{1}\right) .
$$

Stage II Components

Stage II is characterized by the following 4 "specification components" :

$$
\begin{array}{r}
A\left(y_{1}, \xi_{0}\right), A\left(y_{1}, \xi_{1}\right), n_{2}\left(y_{1}\right), w\left(y_{1}\right) . \\
\text { - } A\left(y_{1}, \xi_{0}\right)=1-\Phi\left[\sqrt{n_{2}\left(y_{1}\right)}\left(w\left(y_{1}\right)-\xi_{0}\right)\right] \\
\text { - } A\left(y_{1}, \xi_{1}\right)=1-\Phi\left[\sqrt{n_{2}\left(y_{1}\right)}\left(w\left(y_{1}\right)-\xi_{1}\right)\right]
\end{array}
$$

Stage II Components

Stage II is characterized by the following 4 "specification components" :

$$
\begin{array}{r}
A\left(y_{1}, \xi_{0}\right), A\left(y_{1}, \xi_{1}\right), n_{2}\left(y_{1}\right), w\left(y_{1}\right) . \\
\text { - } A\left(y_{1}, \xi_{0}\right)=1-\Phi\left[\sqrt{n_{2}\left(y_{1}\right)}\left(w\left(y_{1}\right)-\xi_{0}\right)\right] \\
\text { - } A\left(y_{1}, \xi_{1}\right)=1-\Phi\left[\sqrt{n_{2}\left(y_{1}\right)}\left(w\left(y_{1}\right)-\xi_{1}\right)\right]
\end{array}
$$

- 2 components from these 4 are sufficient to determine the other 2.

Type I and Type II Error Rates

To control Type I error rate and to specify power, we need

$$
\begin{aligned}
& \alpha_{2} \equiv \alpha-\alpha_{1} \\
&=\int_{k_{1}}^{k_{2}} A\left(y_{1}, \xi_{0}\right) g_{\xi_{0}}\left(y_{1}\right) d y_{1} \\
& \rho_{2} \equiv \rho-\rho_{1}=\int_{k_{1}}^{k_{2}} A\left(y_{1}, \xi_{1}\right) g_{\xi_{1}}\left(y_{1}\right) d y_{1}
\end{aligned}
$$

where $g_{\xi}\left(y_{1}\right)$ is the pdf of $\operatorname{Normal}\left(\xi, 1 / n_{1}\right)$.

Components

A two-stage adaptive procedure is characterized by the following 9 components:

- Stage I

$$
\alpha_{1}, \beta_{1}, n_{1}, k_{1}, k_{2}
$$

- Stage II

$$
A\left(y_{1}, \xi_{0}\right), A\left(y_{1}, \xi_{1}\right), n_{2}\left(y_{1}\right), w\left(y_{1}\right)
$$

Instead of $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \xi_{0}\right)$ and $\boldsymbol{A}\left(y_{1}, \xi_{1}\right)$, we can choose any $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \boldsymbol{\xi}\right)$ at two distinct $\boldsymbol{\xi}$'s.
Back to Index

Example

In this example, we show that

- a fairly complicated procedure can be placed under our formulation.

Example

In this example, we show that

- a fairly complicated procedure can be placed under our formulation.
- our framework allows manipulation of design parameters to control many aspects of the design, such as the Type I error rate, Type II error rate (power), maximum sample size and so on.

Lan \& Trost's Procedure

$$
\begin{aligned}
& H_{0}: \mu_{t}-\mu_{c} \leq 0 \\
& H_{1}: \mu_{t}-\mu_{c}>0
\end{aligned}
$$

- $\sigma=4$
- $\alpha=.025$
- Power $=.85$ at $\mu_{t}-\mu_{c}=1 .\left(\xi_{1}=.1768\right)$

Conventional single-stage design's sample size is
$N=288$ from each group.
$\underline{A\left(y_{1}, y_{1}\right)}$

Stage I Components

- $n_{1}=115$
- k_{1} satisfies $C P\left(k_{1}\right)=.05 . \Rightarrow k_{1}=.0405$
- $\boldsymbol{k}_{2}=\infty$
- $(\kappa$ satisfies $C P(\kappa)=.65 . \Rightarrow \kappa=.1332)$

Stage I Components

- $n_{1}=115$
- k_{1} satisfies $C P\left(k_{1}\right)=.05 . \Rightarrow k_{1}=.0405$
- $k_{2}=\infty$
- $(\kappa$ satisfies $C P(\kappa)=.65 . \Rightarrow \kappa=.1332)$

We can calculate the remaining 2 components, α_{1} and β_{1} for Stage I.
$\left\{\alpha_{1}=0, \beta_{1}=.072, n_{1}=115, k_{1}=.0405, k_{2}=\infty\right\}$

Stage II Components

- Stage II is divided into "extension" and "continuation" regions based on \boldsymbol{y}_{1}.
- Using $A\left(y_{1}, y_{1}\right)=C P\left(y_{1}\right)$ and the facts that the critical value is constant in terms of z-value and that $\boldsymbol{n}_{2}\left(\boldsymbol{y}_{1}\right)$ is constant in the "continuation" region, we can obtain $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \boldsymbol{\xi}\right), \boldsymbol{n}_{2}\left(\boldsymbol{y}_{1}\right)$ and $\boldsymbol{w}\left(\boldsymbol{y}_{1}\right)$ for the entire range of y_{1} in $\left(k_{1}, \infty\right)$.
$\underline{\boldsymbol{A}\left(\boldsymbol{y}_{1}, \boldsymbol{\xi}\right) \text { and sample size }}$

Problems of Lan \& Trost's Design

- Sample size $\max \left(n_{2}\left(y_{1}\right)\right)=3223$.

Problems of Lan \& Trost's Design

- Sample size
$\max \left(n_{2}\left(y_{1}\right)\right)=3223$.
- $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \xi_{1}\right)$ is not monotone.

Under \boldsymbol{H}_{1},
conditional power is virtually 1 if $y_{1}=.0403$. conditional power is about .8 if $y_{1}=.1332$.

Type I Error and Power

Our framework permits numerical integration to find :
Type I Error Rate $=\int_{-\infty}^{\infty} A\left(y_{1}, \xi_{0}\right) g_{\xi_{0}}\left(y_{1}\right) d y_{1}=.024$

$$
\text { Power at } \xi_{1}=\int_{-\infty}^{\infty} A\left(y_{1}, \xi_{1}\right) g_{\xi_{1}}\left(y_{1}\right) d y_{1}=.877
$$

Type I Error and Power

Our framework permits numerical integration to find :
Type I Error Rate $=\int_{-\infty}^{\infty} A\left(y_{1}, \xi_{0}\right) \boldsymbol{g}_{\xi_{0}}\left(\boldsymbol{y}_{1}\right) d y_{1}=.024$

$$
\text { Power at } \xi_{1}=\int_{-\infty}^{\infty} \boldsymbol{A}\left(\boldsymbol{y}_{1}, \xi_{1}\right) \boldsymbol{g}_{\xi_{1}}\left(y_{1}\right) d y_{1}=.877
$$

Lan and Trost were unable to obtain the above probabilities through integration. Their results are based on simulation.

Modification

Lan and Trost's Design is modified using our calculus.
Our framework allows to design a procedure with the following characteristics:

- $\alpha=.024$
- power $=.877$ at $\xi=\xi_{1}=.1768$
$\rightarrow N=337$.

Sample Size Restriction

Our framework also permits specification of the minimum and maximum sample size.

- $n_{1}+\max \left(n_{2}\left(y_{1}\right)\right)=442$
- $n_{1}+\min \left(n_{2}\left(y_{1}\right)\right)=317$

The total sample size for Stages I and II when continuing to Stage II is between $N=317$ and $N \times 1.4=442$.

Stage I Components

We choose :
$n_{1}=115$ (same as the original design)
$k_{1}=.0405$ (same as the original design)
$\alpha_{1}=.005$

Stage I Components

We choose :
$n_{1}=115$ (same as the original design)
$k_{1}=.0405$ (same as the original design)
$\alpha_{1}=.005$
Then using our framework we can obtain the two remaining components, $\boldsymbol{\beta}_{1}$ and \boldsymbol{k}_{2}.
$\left\{\alpha_{1}=.005, \beta_{1}=.072, n_{1}=115, k_{1}=.0405, k_{2}=.2406\right\}$

Stage II Components

We choose :

$$
A\left(y_{1}, \xi_{0}\right)=.02+6.93\left(y_{1}-k_{1}\right)^{2}
$$

$$
\text { This satisfies } \alpha_{2}=.020=\int_{k_{1}}^{k_{2}} A\left(y_{1}, \xi_{0}\right) g_{\xi_{0}}\left(y_{1}\right) d y_{1}
$$

$A\left(y_{1}, \xi_{1}\right)=.925$
This satisfies $\rho_{2}=.602=\int_{k_{1}}^{k_{2}} \boldsymbol{A}\left(y_{1}, \xi_{1}\right) \boldsymbol{g}_{\xi_{1}}\left(y_{1}\right) d y_{1}$.
$\underline{A\left(\boldsymbol{y}_{1}, \boldsymbol{\xi}\right) \text { and sample size }}$

Stage II Components

We choose :

$$
A\left(y_{1}, \xi_{0}\right)=.02+6.93\left(y_{1}-k_{1}\right)^{2}
$$

The same as before

$$
A\left(y_{1}, \xi_{1}\right)=.89+2.4\left(y_{1}-k_{1}\right)^{2}
$$

$\boldsymbol{A}\left(\boldsymbol{y}_{1}, \boldsymbol{\xi}\right)$ and sample size

Stage II Components

Our framework allows modification of the sample size function directly so that it does not exceed the maximum and it does not increase.

Sample size

Stage II Components

Our framework allows modification of the sample size function directly so that it does not exceed the maximum and it does not increase.

Sample size
We keep $A\left(y_{1}, \xi_{0}\right)=.02+6.93\left(y_{1}-k_{1}\right)^{2}$ unchanged.
Then with this new $n_{2}\left(y_{1}\right)$ function, $A\left(y_{1}, \xi_{1}\right)$ and $w\left(y_{1}\right)$ are modified.
$\underline{A\left(y_{1}, \xi\right)}$

Comparison of the Two Designs

the Original Lan and Trost's Design						
	Stage I μ					
Accept	Continue	Reject	Reject	Power	$n_{1}+E\left[n_{2}\left(Y_{1}\right)\right]$	
0.00	.668	.332	0	.024	.024	397.4
0.25	.484	.516	0	.178	.178	476.6
0.50	.304	.696	0	.457	.457	501.1
0.75	.162	.838	0	.706	.706	468.7
1.00	.072	.928	0	.877	.877	407.7
1.25	.026	.974	0	.961	.961	350.8

the Modified Design

	Stage I			Stage II		
μ	Accept	Continue	Reject	Reject	Power	$n_{1}+E\left[n_{2}\left(Y_{1}\right)\right]$
0.00	.668	.327	.005	.019	.024	208.1
0.25	.484	.498	.018	.103	.121	251.6
0.50	.304	.645	.051	.308	.359	284.4
0.75	.162	.715	.123	.542	.665	294.3
1.00	.072	.681	.247	.630	.877	278.0
1.25	.026	.557	.417	.548	.965	242.7

Significant Design Parameters

We conducted a computational experiment to see which design components have significant influence on the characteristics of the resulting design.

Significant Design Parameters

We conducted a computational experiment to see which design components have significant influence on the characteristics of the resulting design.

What enabled us to conduct this study is our ability to place many two-stage adaptive procedures under one formulation indexed by the following design parameters:

Design Parameters

- α_{1}
- $\boldsymbol{\beta}_{1}$
- f, the ratio of n_{1} to N
- $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \xi_{0}\right)$
- $A\left(y_{1}, \xi_{1}\right)$

Also various σ 's are included in the study.

Performance Characteristics

Different combinations of the design parameters yield designs with different performance characteristics (power and expected sample sizes).

Performance Characteristics

Different combinations of the design parameters yield designs with different performance characteristics (power and expected sample sizes).

A design parameter that demonstrates relatively substantial variability in the "response surface" is considered influential and thus important.

Summary of the Results

- $\alpha_{1}, \beta_{1}, f, f \times \alpha_{1}$ and $f \times \beta_{1}$ explain most of variation in power and expected sample sizes.

Summary of the Results

- $\alpha_{1}, \beta_{1}, f, f \times \alpha_{1}$ and $f \times \beta_{1}$ explain most of variation in power and expected sample sizes.
- A small α_{1} and a large β_{1} seem to perform well.

Summary of the Results

- $\alpha_{1}, \beta_{1}, f, f \times \alpha_{1}$ and $f \times \beta_{1}$ explain most of variation in power and expected sample sizes.
- A small α_{1} and a large β_{1} seem to perform well.
- When f is large, there are very small differences in the performance characteristics for different choices of α_{1} and β_{1}.

Summary of the Results

- $\alpha_{1}, \beta_{1}, f, f \times \alpha_{1}$ and $f \times \beta_{1}$ explain most of variation in power and expected sample sizes.
- A small α_{1} and a large β_{1} seem to perform well.
- When f is large, there are very small differences in the performance characteristics for different choices of α_{1} and β_{1}.
- $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \boldsymbol{\xi}_{0}\right)$ and $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \boldsymbol{\xi}_{1}\right)$ are both insignificant.

Summary of the Results

- $\alpha_{1}, \beta_{1}, f, f \times \alpha_{1}$ and $f \times \beta_{1}$ explain most of variation in power and expected sample sizes.
- A small α_{1} and a large β_{1} seem to perform well.
- When f is large, there are very small differences in the performance characteristics for different choices of α_{1} and β_{1}.
- $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \xi_{0}\right)$ and $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \xi_{1}\right)$ are both insignificant.

Back to Index

Summary

Our calculus for two-stage adaptive procedures

- enables us to design a two-stage adaptive procedure with specific design characteristics.

Summary

Our calculus for two-stage adaptive procedures

- enables us to design a two-stage adaptive procedure with specific design characteristics.
- Computer program to manipulate specification components

Summary

Our calculus for two-stage adaptive procedures

- enables us to design a two-stage adaptive procedure with specific design characteristics.
- Computer program to manipulate specification components
- puts into perspective previously proposed procedures.

Summary

Our calculus for two-stage adaptive procedures

- enables us to design a two-stage adaptive procedure with specific design characteristics.
- Computer program to manipulate specification components
- puts into perspective previously proposed procedures.
- Two-Stage Group Sequential Procedure

Summary

Our calculus for two-stage adaptive procedures

- enables us to design a two-stage adaptive procedure with specific design characteristics.
- Computer program to manipulate specification components
- puts into perspective previously proposed procedures.
- Two-Stage Group Sequential Procedure
- Comparison of designs to assess the importance of each specification component on the resulting design

Extensions

- Unequal Sample Sizes

Extensions

- Unequal Sample Sizes
- Planned unequal sample sizes

Extensions

- Unequal Sample Sizes
- Planned unequal sample sizes
- Missing observations

Extensions

- Unequal Sample Sizes
- Planned unequal sample sizes
- Missing observations
- Unknown Variance

Extensions

- Unequal Sample Sizes
- Planned unequal sample sizes
- Missing observations
- Unknown Variance
- Switching study objectives between superiority and noninferiority

Future Research

- Inference (e.g., unbiased estimator and confidence interval)

Future Research

- Inference (e.g., unbiased estimator and confidence interval)
- Multi-stage procedure

Future Research

- Inference (e.g., unbiased estimator and confidence interval)
- Multi-stage procedure

Back to Index

Group Sequential Procedures

A two-stage group sequential procedure can be placed under the same formulation using our calculus by noticing :

- The Stage II sample size, \boldsymbol{n}_{2}, does not vary with \boldsymbol{y}_{1}.

Group Sequential Procedures

A two-stage group sequential procedure can be placed under the same formulation using our calculus by noticing :

- The Stage II sample size, \boldsymbol{n}_{2}, does not vary with \boldsymbol{y}_{1}.
- The critical value, z_{c}, for the standardized combined-stage statistic does not vary with y_{1}.

Group Sequential Procedures

A two-stage group sequential procedure can be placed under the same formulation using our calculus by noticing :

- The Stage II sample size, \boldsymbol{n}_{2}, does not vary with \boldsymbol{y}_{1}.
- The critical value, z_{c}, for the standardized combined-stage statistic does not vary with y_{1}.

Jennison and Turnbull (1999) give the Stage I and II critical values in terms of Z.

Specification Components

- Stage I
$\left\{n_{1}, k_{1}, k_{2}\right\}$
- Stage II

$$
\left\{n_{2}\left(y_{1}\right), w\left(y_{1}\right)\right\}
$$

Example

Suppose that $\mu_{0}=0, \mu_{1}=1, \sigma=4, \alpha=.05, \beta=.10$.

- For Stage I, $n_{1}=143, z_{a}=.2298$ and $z_{b}=2.343$.
- For Stage II, $n_{2}=143$ and $z_{c}=1.657$.

Example

Suppose that $\mu_{0}=0, \mu_{1}=1, \sigma=4, \alpha=.05, \beta=.10$.

- For Stage I, $n_{1}=143, z_{a}=.2298$ and $z_{b}=2.343$.
- For Stage II, $n_{2}=143$ and $z_{c}=1.657$.
- For Stage I, $n_{1}=143, k_{1}=.0192, k_{2}=.1959$.
- For Stage II, $n_{2}=143, w\left(y_{1}\right)=.1960-y_{1}$.

Example

Suppose that $\mu_{0}=0, \mu_{1}=1, \sigma=4, \alpha=.05, \beta=.10$.

- For Stage I, $n_{1}=143, z_{a}=.2298$ and $z_{b}=2.343$.
- For Stage II, $n_{2}=143$ and $z_{c}=1.657$.
- For Stage I, $n_{1}=143, k_{1}=.0192, k_{2}=.1959$.
- For Stage II, $n_{2}=143, w\left(y_{1}\right)=.1960-y_{1}$.
$\underline{A\left(y_{1}, \xi_{0}\right), A\left(y_{1}, \xi_{1}\right) \text { for Group Sequential Procedure }}$

$C P$

$C P$

Total Sample Size

Flowchart

Stage I

Sample size $=\boldsymbol{n}_{\mathbf{1}}$

				$\boldsymbol{k}_{\mathbf{2}}$
Accept \boldsymbol{H}_{0}				
Stop	Continue to	Reject $\boldsymbol{H}_{\mathbf{0}}$		
$====$	Stage II	Stop		
	\Downarrow			

Flowchart

Stage I

Sample size $=\boldsymbol{n}_{1}$

				$\boldsymbol{k}_{\mathbf{2}}$
Accept \boldsymbol{H}_{0}				
Stop	Continue to	Reject $\boldsymbol{H}_{\mathbf{0}}$		
$====$	Stage II	Stop		
	\Downarrow			

Stage II
Sample size $=\boldsymbol{n}_{\mathbf{2}}\left(\boldsymbol{y}_{1}\right)$
$\boldsymbol{w}\left(\boldsymbol{y}_{1}\right)$
Accept $\boldsymbol{H}_{\mathbf{0}}$
Reject $\boldsymbol{H}_{\mathbf{0}}$

Lan and Trosts's $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{1}\right)$

Lan and Trosts's $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \boldsymbol{\xi}\right)$

Lan and Trosts's $\boldsymbol{A}\left(\boldsymbol{y}_{1}, \boldsymbol{\xi}\right)$

Total Sample Size

$A\left(y_{1}, \xi\right)$

$n_{1}+n_{2}\left(y_{1}\right)$

$A\left(y_{1}, \xi\right)$

$n_{1}+n_{2}\left(y_{1}\right)$

$n_{1}+n_{2}\left(y_{1}\right)$

$n_{1}+n_{2}\left(y_{1}\right)$

$A\left(y_{1}, \xi\right)$

$A\left(y_{1}, \xi\right)$

$n_{1}+n_{2}\left(y_{1}\right)$

$A\left(y_{1}, \xi\right)$

