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Outline

√
Example of decision problem with competing objectives

√
Review approach/barriers to analytic solution

√
Review approach to approximate asymptotic solution → sequential

√
Describe optimal fully sequential solution (requires computing)

√
Get more practical – sample in stages

√
Compare asymptotic result & exactly optimal results

√
If time, then 2nd example – Two Armed Bandit

√
Comments & Future research
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Basic Model

Imagine 2 populations of Bernoulli response data that represent patient

responses to treatment arms 1 and 2, (T1, T2).

Sample N observations

From T1 we get X11, X12, . . . ∼ B(1, p1) ↘

Independent with (p1, p2) ∈ (0, 1) × (0, 1)

From T2 we get X21, X22, . . . ∼ B(1, p2) ↗
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Sampling Procedures

Define an allocation rule or design as a sequence of indicators, δi, specifying

the treatment for patient i; i = 1, ..., N.

Thus, δ(N) = (δ1, δ2, ..., δN) such that δi =

{
1, if T1

0, if T2

√
n1 = ΣN

1 δi and n2 = N − ΣN
1 δi

√
For adaptive rules, δi may depend on data observed through time i − 1.
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Part I: Loss + Cost

√
Let θ = (p1 − p2). Estimate θ with MLEs.

√
Consider loss function incorporating normalized MSE(θ, θ̂)

along with a cost function reflecting failures during the study. ↙

LN(θ, θ̂n1,n2
) = N 2

[
(θ − θ̂n1,n2

)2
]

+
︷ ︸︸ ︷
n1(1 − p1) + n2(1 − p2)

n1 = # from T1 and n2 = # from T2

=⇒ Goal: Find δ(N) to minimize the expected loss or “risk”, RN(θ, θ̂n1,n2
)
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Risk Function

Analytically, given (p1, p2), one can find n∗
1 = n∗

1(N ; p1, p2) to minimize

RN(θ, θ̂n1,n2
) = E

[
N 2

{
(θ − θ̂n1,n2

)2
}

+ n1(1 − p1) + n2(1 − p2)
]

where E is taken with respect to the binomial model, and 0 < n1 < N .

−→ But this doesn’t work unless we know (p1, p2).

√
We could use equal allocation, but lose on “ethical” cost

√
We could guess or estimate (p1, p2) and use n∗

1 = n∗
1(N ; p̂1, p̂2)

=⇒ Use adaptive/sequential design.
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Bayesian Design

? Let p1, p2 have prior distribution, ξ(p1, p2).

? After m observations ξ is updated to get posterior ξm(p1, p2 | data)

? In our examples, ξ is the product of independent beta distributions.

Adjusted problem: Locate δ(N) to minimize the Bayes risk :

RN(θ, θ̂n1,n2
) = Eξ

[
N 2

{
(θ − θ̂n1,n2

)2
}

+ n1(1 − p1) + n2(1 − p2)
]

For Eξ is expectation wrt prior, where the data follow the binomial model.

⇒ Seek designs that are insensitive to choice of prior distribution. ⇐
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Large Sample Approach

√
Optimal solutions exist theoretically via dynamic programming, but are

infeasible to compute.

√
For normal rv’s, W & H (1990) use a quasi-Bayesian approach to obtain a

lower bound for the integrated risk (not quite Bayes since use MLEs).

√
This asymptotic lower bound is attainable to second order for a fairly large

class of of allocation rules → call these ∆A.

√
For a broad class of priors, the designs, δ(N), and estimators are

independent of the Bayesian approach (in the limit).
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Practical Sample Sizes

Hardwick (1991) handles binomial case. Compares asymptotic bound for

minimum Bayes risk with exactly optimal design using dynamic programming.

N MinBR/N % Difference

10 1.153 2.75 %

50 1.134 1.15 %

160 1.127 0.05 %

320 1.125 0.03 %

∞ 1.121

% Difference = 1− Min Bayes Risk

N ∗ Lower Bound

Note Hardwick (1991) cannot evaluate operating char. of optimal design.

Hardwick and Stout (1995) show that general evaluations can be carried out

using new technique: Path Induction. However, despite this there are −→
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Objections to Fully Sequential Designs

−→ They are complex to implement.

−→ Responses assumed before next allocation.

−→ Allocation of next patient deterministic.

−→ While risk is minimized, trial time is maximized.

Preferable to Sample in Stages or Groups

−→ Allows us to randomize within stages

−→ Allows responses to be delayed somewhat

−→ Concurrent patients reduces trial time
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K-Stage Procedures

Let Li = length of Stage i, and L1i = # from T1 within Stage i; i = 1, . . . , k.

Then δ(L) describes a k-stage procedure where

L =





L1 L11

... ...

Lk L1k
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Flexible 3-Stage Procedure
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Asymptotics Again

√
There is cottage industry of literature on second order asymptotically

optimal 3-stage designs.

√
In fact, ∆A, (from W & H) includes procedures that allocate patients in

3-stages.

√
Nowhere are there good guidelines for choosing stage sizes in practice.

√
(As a rule, 2-stage designs achieve only first order asymptotic

optimality.)
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Explicit W & H 3-Stage Procedure

Recall n∗
1(N ; p1, p2) is number on T1 that minimizes RN(θ, θ̂n1,n2

)

Stage 1: Sample L1

2 from each treatment (so L11 = L12 = L1

2 ).

Stage 2: Sample L21 more from T1 and L22 more from T2, where

L11 + L21 = min
{
N − L12 − L3, max{L11, n∗

1(L1 + L2; p̂1(L11), p̂2(L12)}
}

and L22 = N − L1 − L3 − L21.

Stage 3: Sample L31 more from T1 and L32 more from T2, where

Σ3
1Li1 = min

{
N−L12+L22, max{L11+L21, n

∗
1(N ; p̂1(L11+L21), p̂2(L12+L22)}

}

and L32 = N − L1 − L2 − L31.
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How to choose stage sizes?

Well, that all looked very specific ... except that

=⇒ From W & H we get only

lim
N→∞

L1 + L3

N
= 0 and lim

N→∞

N log N

L3

√
L1

= 0

We’ll see that these guidelines are of little use for practical

sample sizes. In fact, they’re conceptually wrong for moderate N.
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Optimal k-stage Procedures

√
An optimal k-stage procedure is one that achieves minδ(L) R(ξ, δ(L))

√
Use dynamic programming. Massive computing required.

√
Determine best 1-stage procedure starting at any possible point in the

experiment. (Can sometimes be done analytically)

√
For all 1 < i < k, determine optimal i-stage rule starting at any point in

the experiment by evaluating all choices for sampling in this stage and then

finishing with optimal (k-i)-stage continuation.

√
Evaluate all possible parameter choices for the initial stage of the k-stage

procedure using the optimal (k-1)-stage continuation.
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Stage Lengths for Optimal Rule as N Increases
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Efficiency Compared to Fully Sequential Design

0 ≤ Efficiency(δ) =
Risk using any δ

Risk Optimal Procedure
≤ 1

Design Type L1 E(L2) E(L3) Efficiency

Optimal 3-Stage 33 4 13 0.9994

Optimal WH 6 40 4 0.9990

Optimal 2-Stage 38 12 – 0.997

WH using guess 34 4 12 0.790

p1 ∼ Be(1, 10); p2 ∼ Be(10, 1) and N = 50
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Part II: Simple 2-Stage Problem

Goal: Maximize total successes among N observations, using 2 stages.

Note: Allocate all of 2nd stage to arm observed to be best during 1st stage.

Thus only need to determine

How many observations should be allocated to each arm for stage 1?

Answer will depend on N and priors.
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Problem has an Extensive History

√
Colton (1965): 1st stage equal allocation, optimal first stage size unknown.

√
Canner (1970): (Still EA for 1st stage) Analytically: Bayesian with uniform

priors, optimal 1st stage size ≈
√

2N + 4 − 2.

? Conjecture: optimal 1st stage Θ(
√

N) for arbitrary beta priors.

√
Cheng (1996): Analytically: O(

√
N) upper bound for optimal allocation to

each arm on stage 1. No longer EA.

√
Hardwick & Stout (1995): Computationally: exact optimal allocation for

arbitrary priors.
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First Stage Size

“Upper Bound” is from Cheng, as are the priors
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2-Stage 2-Arm Bandit Epilogue

Cheng, Su, and Berry (2002): finally obtain analytic asymptotically optimal 1st

stage allocation for each arm for a general class of priors. Allocation is Θ(
√

N).

This was after many years of work, by several people, on this simple objective

function with a degenerate 2nd stage.

By changing one line in our program, we can optimize new objective functions,

even very complex ones.
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Results

? May not always need optimal designs but they provide measuring stick for

other designs

? Asymptotic analytics often difficult to apply to useful sample size

? Work applicable to arbitrary objective functions (must be additive, no

minimax)

? Optimal 2- and 3-stage designs can be highly efficient

? New algorithms and good implementations allow one to optimize and

analyze designs for practical sample sizes.



24

Some Future Work

√
Applications to correct selection, hypothesis testing

√
Incorporating decision and experimental costs

√
Frequentist and Bayesian evaluations

√
Extrapolating designs to sample sizes larger than can be optimized

√
Visualizing designs to understand them better
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