ADAPTIVE DESIGNS An Overview

Nancy Flournoy
University of Missouri

Fields Institute September 26, 2003

CONVENTIONAL EXPERIMENTAL DESIGNS

- All treatments, doses and/or treatment combinations are fixed prior to the study.
- Patients are randomized to the various treatments.
- The chance that any particular treatment will be selected for any particular patient remains constant throughout the study
 - (e.g., randomize half of the subjects to an experimental treatment and half to a control).
- Sample size if fixed

ADAPTIVE DESIGNS

- Subjects are treated sequentially, or in (two or more) groups.
- A treatment is assigned to each subject.
- The chance that a subject (group) will get a particular treatment changes as information accrues in the study

REASONS FOR USING ACCRUING EXPERIMENTAL DATA TO CHANGE TREATMENT ALLOCATION PROBABILITIES

→ to improve power,

efficiency,

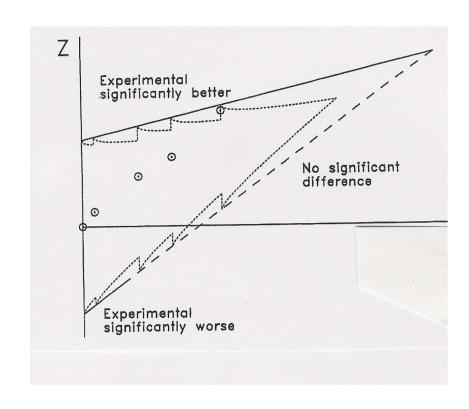
safety,

efficiency,

model specification

WHY THE INTEREST IN ADAPTIVE DESIGNS NOW?

- Theoretical advances
- Computational advances


ADAPTIVE DESIGNS OUTLINE

- 1. CONVENTIONAL VS ADAPTIVE DESIGNS
- 2. EARLY STOPPING
- 3. ADAPTING TO BALANCE SUBJECT ALLOCATION BETWEEN TREATMENT GROUPS
- 4. TWO STAGE DESIGNS
- BAYESIAN DESIGNS
- 6. OPTIMAL DESIGNS & APPROXIMATIONS TO THEM
- 7. AD HOC DESIGNS
 - UP & DOWN DESIGNS FOR TOXICITY ASSESSMENT & PHASE I CLINICAL TRIALS
 - UP & DOWN DESIGNS FOR PHASE I/II TRIALS
 - AN OPTIMIZING URN DESIGN
- 8. FINAL COMMENTS

EARLY STOPPING Sequential Analysis

- Subjects arrive sequentially.
- A treatment is assigned to each subject
- The probability that a subject gets any particular treatment remains constant.
- Outcomes are assessed sequentially to determine if the better treatment can be identified with the desired confidence, and the study terminated.

A Triangular Early Stopping Rule

ADAPTING TO BALANCE SAMPLE SIZES BETWEEN TREATMENTS WHILE PRESERVING THE BENEFITS OF RANDOMIZATION

- A biased coin design (Efron, 1971)
- Talk 1. Biased Coin vs Ehrenfest Urn: an analysis of randomness, balance and power by Yung-Pin Chen

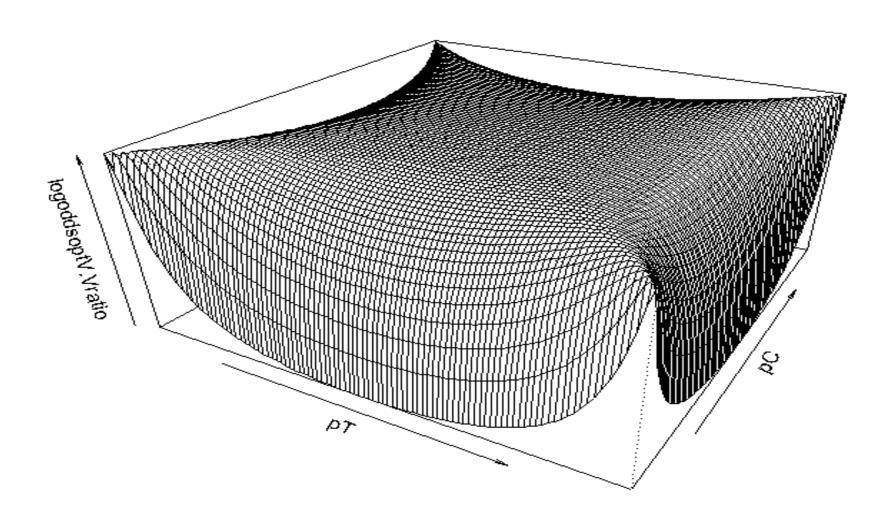
Balance maximizes power when groups have equal variances

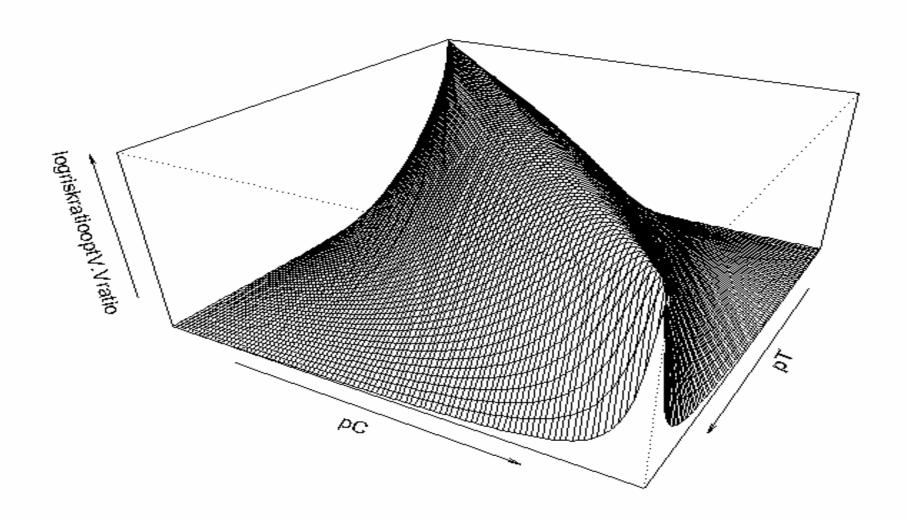
This is often a reasonable assumption when comparing means.

Let's consider comparing proportions p_T and p_C

- 1. Risk difference $p_T p_C$
- 2. Log odds metric

$$\log (p_T/(1 - p_T) - \log (p_C/(1 - p_C))$$


3. Log risk ratio

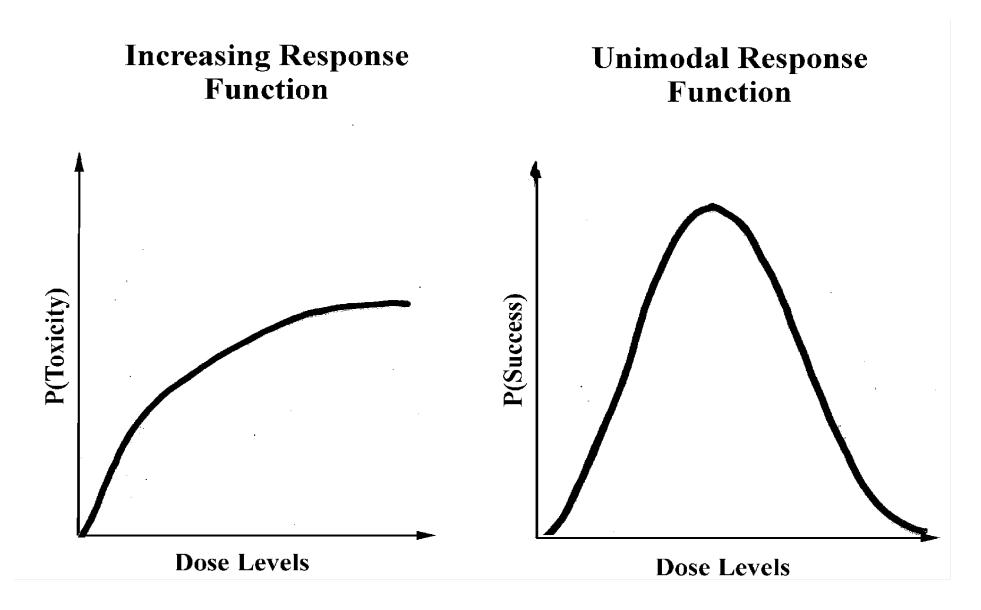

$$log(p_T) - log(p_C)$$

Calculate variance of each metric.

Evaluate each variance at $n_T/n = 1/2$

Find n_T/n for which variances are a minimum, and evaluate variances at these minima Plot optimal variance / variance at $n_T/n = 1/2$

TWO STAGE DESIGNS


 Talk 2. A Calculus for Design of Two-Stage Adaptive Procedures by Tatsuki Koyama

 Talk 3. ADAPTIVE FACTORIAL EXPERIMENTS FOR MODEL IDENTIFICATION by Subir Ghosh

RESPONSE - DRIVEN ADAPTIVE DESIGNS

- Bayesian Designs
- Optimal Designs
 (Exact & Asymptotic)
- Ad hoc designs
 Up-and-Down Designs
 Urn Designs
 Stochastic approximation

MOTIVATING APPLICATIONS IN MEDICINE

BAYESIAN DESIGNS

 Talk 4. Individualized patient dosing in phase I clinical trials
 by Andre Rogatko

 Talk 5. Flexible Bayesian methods for cancer phase I clinical trials
 by Mourad Tighiouart

OPTIMAL DESIGNS

- Talk 7. Optimal allocation in muilt-armed clinical trials
 by Yevgen Tymofyeyev
- Talk 8. Bandit problems and adaptive clinical trials
 by Xikui Wang
- Talk 9. Optimal few-stage designs for clinical trials
 by Janis Hardwick

AD HOC ADAPTIVE DESIGNS

AN URN DESIGN

 Talk 6 Minimized Hellinger distance estimations for randomized play the winner rule by An-Lin Chen

AN UP-AND-DOWN DESIGN

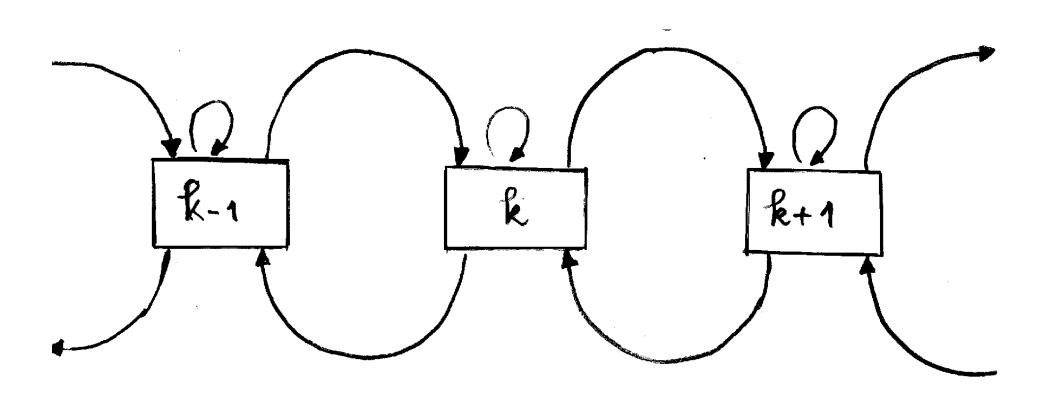
- Talk 12. Up-and-down designs for phase I trials; an evaluation of different designs and estimators by Hon Keung Tony Ng
- Also Talks 10, 11 & 13?

BIG ISSUES Estimation and Inference

 Talk 6. Minimum Hellinger distance estimation for randomized play the winner rule

by An-Lin Chen

 Talk 10. Nonparametric likelihood for response adaptive randomization with delayed response
 by Anand Vidyahankar


BIG ISSUES efficiency and power

- Talk 1. Biased coin vs Ehrenfest urn: an analysis of randomness, balance and power by Yung-Pin Chen
- Talk 9. Optimal few-stage designs for clinical trials by Janis Hardwick
- Talk 11. Response-adaptive designs: ethics and efficiency of estimation
 by Anastasia Ivanova
- Talk 13. Response-adaptive designs: maximizing power and minimizing the expected number of failures by Feifang Hu

UP-AND-DOWN DESIGNS

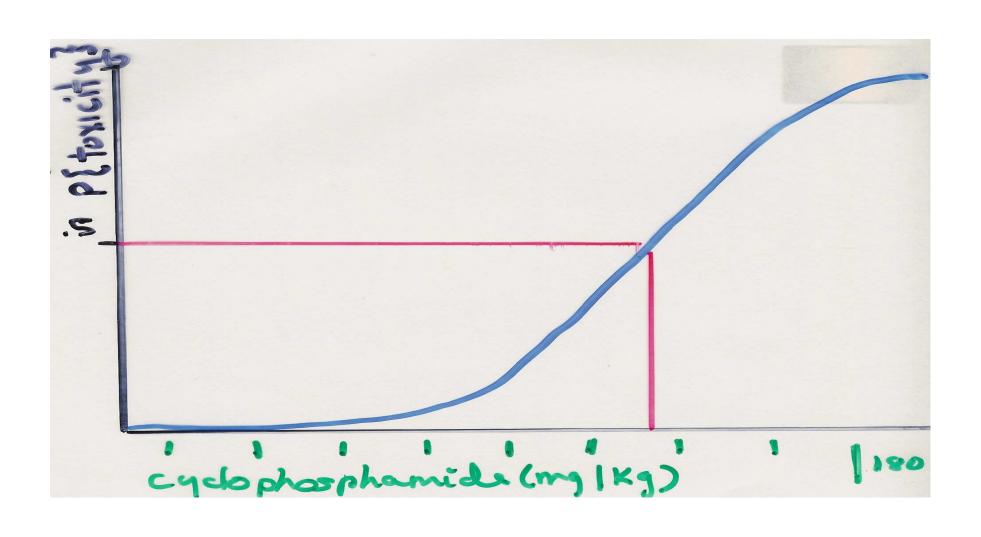
- FOR PRODUCT LABELING
- FOR CONTOLLING TOXICITY
- FOR DOSE-FINDING

UP AND DOWN DESIGN

ADVANTAGES OF UP-AND-DOWN DESIGNS

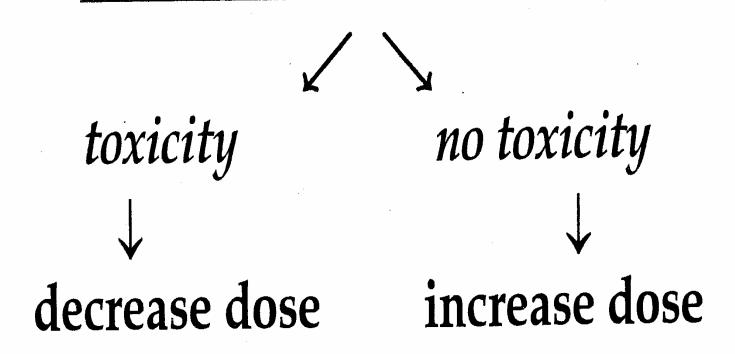
- Cluster Doses around an unknown Target Dose
- Easy to Conceptualize
- Easy to Implement
- Changing Doses is Done Conservatively

 (i.e., no large increments between subjects)
- No Parametric Model
- Exact Distribution Theory Available:
 - Durham, **Flournoy**, Haghighi (1995). Up-and-down designs II: Exact treatment moments.

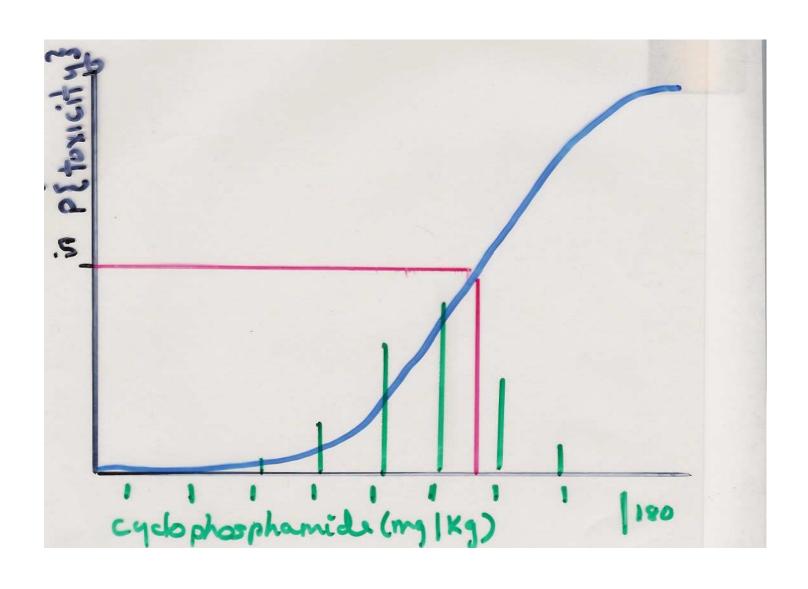

IMS Monograph

- Flournoy, Durham, Rosenberger (1995). Toxicity in sequential dose-response experiments. Sequential Analysis.

UP-AND-DOWN DESIGNS


WITH SEQUENTIAL ACCRUAL

TARGETING THE LD50



DIXON AND MOOD (1948)

Given a Trial at Dose k

ASYMPTOTIC TREATMENT DISTRIBUTION TARGETING THE LD50

THEOREM

For any increasing response function, the asymptotic treatment distribution is unimodal with mode $\widehat{\mu}$ less than Δ away from the dose for which $P\{\text{toxicity}\}=.5$

Durham, SD, **Flournoy**, N. (1994). Random walks for quantile estimation. **Statistical Decision Theory and Related Topics V**, 467-476. Springer-Verlag

EPA AND OECD "APPROVED"

UP AND DOWN DESIGN
FOR
PRODUCT LABELING
ANIMAL STUDIES

Up-and-Down Procedure for Acute Oral Toxicity Updates and Announcements http://iccvam.niehs.nih.gov/

U.S. EPA Announces
Availability of Revised Final
Health Effects Test Guidelines:

Acute Oral Toxicity Revised December 2002

EPA & OECD "Approved" Up-and-down procedure

Aim: sequential procedure to estimate LD_{50}

Choose initial dose below guess of LD₅₀

Test one animal

death: decrease dose by factor of $\sqrt{10}$ for next animal survival: increase dose by factor of $\sqrt{10}$ for next animal Continue until some stopping criterion is met

Estimate LD₅₀ using maximum likelihood (assuming β) obtain confidence interval from profile likelihood

Test Guidelines/Acute Toxicity Acute Oral Toxicity Up-And-DownProcedure

- <u>User Documentation for the AOT425StatPgm Program</u>
- <u>AOT425StatPgm</u> (This is a self-extracting zip file which will install the program on your computer in two steps...) *Note: This is to confirm that use of the computer program, AOT425StatPgm, developed by Westat for the US EPA, is freely given and there are no licensing restrictions in connection with its use.*
- <u>AOT Test Data Set</u> (This is a zip file which contains 15 test data sets, a result table, and instructions for their use to verify proper installation of the AOT425StatPgm program)
- QA Testing for the AOT425StatPgm Program (PDF)
- Simulation Results for the AOT425StatPgm Program (PDF)
- Toxicology Guidance: Performance of the Up-and-Down Procedure (PDF))
- OECD Test Guideline 425: Acute Oral Toxicity Up-and-Down Procedure (PDF)
- OPPTS Harmonized Test Guideline 870.1100 Acute Oral Toxicity (PDF)

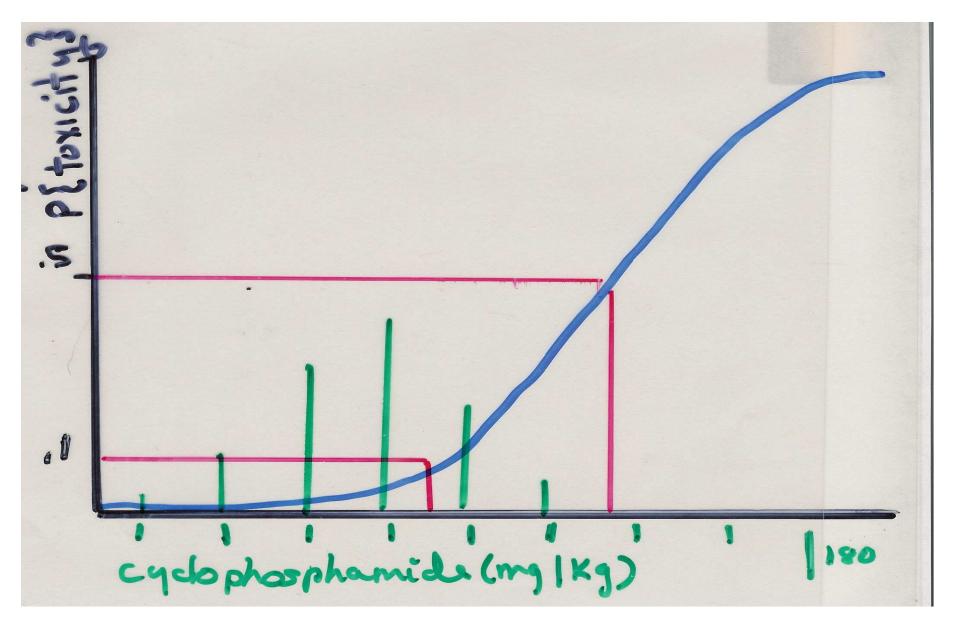
Source: http://www.epa.gov/oppfead1/harmonization/

STATISTICAL CONCERNS UDP SHOULD NOT BE USED FOR

- RISK ASSESSMENT
 Estimate LDp, p possibly small
- CONFIDENCE INTERVALS
 FOR THE LD50

TARGETING THE LDI

BIASED COIN UP-AND-DOWN DESIGN FOR Г≤.5


Given a Trial at Dose k

toxicity no toxicity decrease flip a coin $P\{\text{heads}\} = \frac{\Gamma}{1-\Gamma}$ dose tails heads stay increase

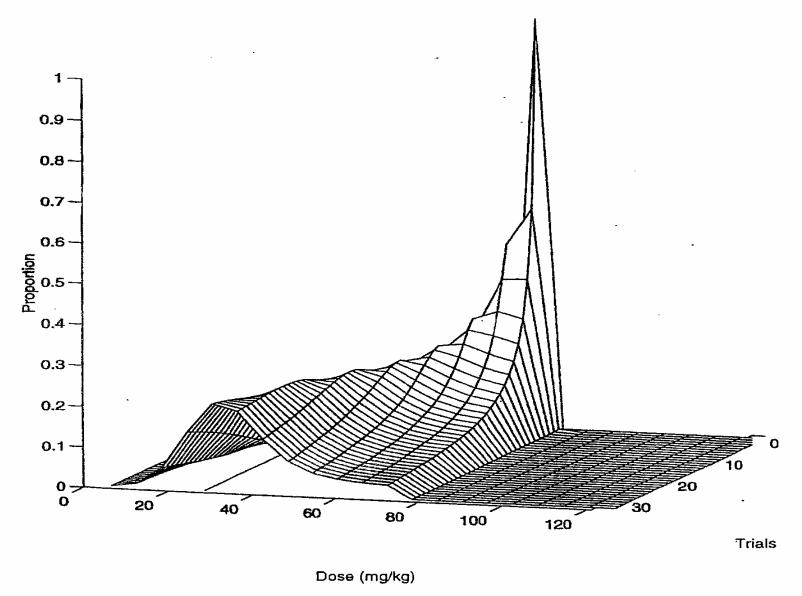
put

dose

ASYMPTOTIC TREATMENT DISTRIBUTION TARGETING LDF

THEOREMS

If treatments are selected according to the Biased Coin Up and Down Design, and the probability of response increases with dose,


Then, asymptotically,

- Treatments assignments are unimodally distributed around the target dose
- Mode of the treatment distribution is the largest dose <= target dose
- |treatment mode target dose| <= interval between doses

WHAT ABOUT SMALL SAMPLE SIZES?

Biometrics, June 1997

Expected Allocations: Empirical (Fine Mesh)

Expected proportions of subjects allocated at each dose level under the empiric response function. We interpolate between the points that occur at n = 1, ..., 34 and each possil dose level in x_1 .

WE RECOMMEND USING SMOOTHED ISOTONIC REGRESSION TO ESTIMATE THE LDF

Stylianou, M, Flournoy, N (2002).
 Dose finding using isotonic regression estimates in an up-and-down biased coin design. *Biometrics*.

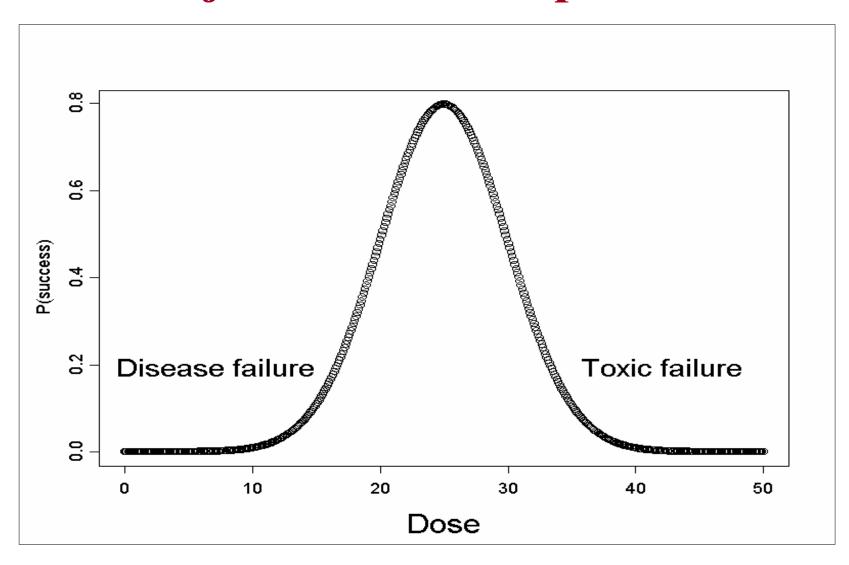
ISOTONIC REGRESSION is NONPARAMETRIC

If observed proportion of responses increase with dose, you are done.

Going from lowest dose toward the highest dose, whenever the empirical proportion of responses drops, average it with the one before.

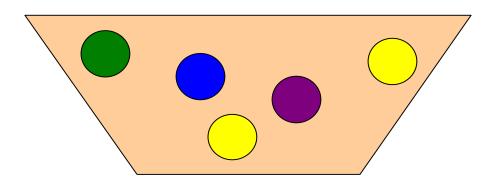
WHY NOT MLE?

- REQUIRES PARAMETIC MODEL FOR RESPONSE FUNCTION, e.g. logistic
- DESIGN IS NOT GOOD FOR ESTIMATING THE SLOPE PARAMETER OF A PARAMETRIC MODEL
- OFTEN MLE DOES NOT EXIST FOR SMALL SAMPLE SIZES


SOME OTHER UP-AND-DOWN DESIGNS

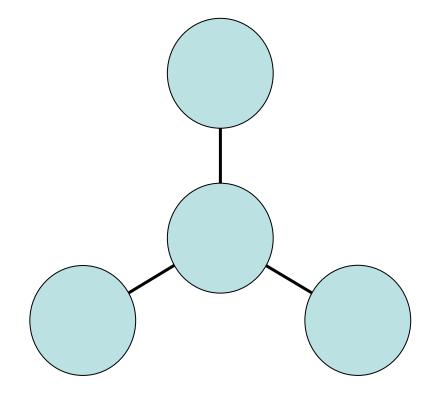
FOR CONTOLLING TOXICITY

- Group up-and-down Designs (Gezmu & Flournoy)
- r-in-a-row (Gezmu & Flournoy)
- Moving Average (Ivanova, Mohanty & Durham)
- Narayana's (Ivanova, Mohanty & Durham)


Talk 12. comparisons by Hon Keung Tony Ng

Optimizing Up-and-Down Designs Cluster Subjects Around Optimal Dose

OPTIMIZING URN DESIGNS

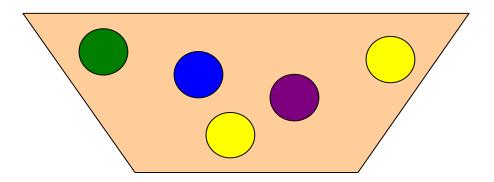

PURE BIRTH URN DESIGN Li, Durham & Flournoy

- Draw a ball and replace it.
- If ball is color i, give treatment i.
- If that treatment is successful, add another color *i* ball.
- If that treatment is a failure, do nothing.

PURE BIRTH URN DESIGN

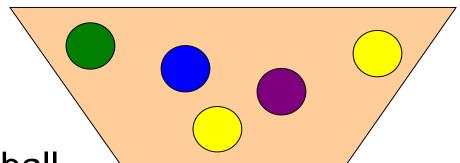
- Suppose the best treatment corresponds to the green balls.
- Green balls will proliferate until virtually all the balls are green.

 $\alpha_k = P\{\text{success given treatment } k\}$


THEOREM

If $\max\{\alpha_1, ..., \alpha_K\} = \alpha_{i,}$ the proportion of type i balls $\rightarrow 1$

wp 1 as $n \to \infty$


PURE DEATH URN DESIGN

Ivanova

- Draw a ball and replace it.
- If ball is color i, give treatment i.
- If that treatment is successful, replace the drawn ball.
- If that treatment is a failure, do not replace the drawn ball.

BIRTH AND DEATH URN DESIGN Ivanova, Rosenberger, Durham & Flournoy

- Draw a ball.
- If ball is color i, give treatment i.
- If that treatment is successful, add another color i ball.
- If that treatment is a failure, do not replace the drawn ball.

RANDOMIZED PLAY THE WINNER

Does it have a future?

Talk 6 (others?).

ADAPTIVE DESIGNS OUTLINE

- 1. CONVENTIONAL VS ADAPTIVE DESIGNS
- 2. EARLY STOPPING
- 3. ADAPTING TO BALANCE SUBJECT ALLOCATION BETWEEN TREATMENT GROUPS
- 4. TWO STAGE DESIGNS
- BAYESIAN DESIGNS
- 6. OPTIMAL DESIGNS & APPROXIMATIONS TO THEM
- 7. AD HOC DESIGNS
 - UP & DOWN DESIGNS FOR TOXICITY ASSESSMENT & PHASE I CLINICAL TRIALS
 - UP & DOWN DESIGNS FOR PHASE I/II TRIALS
 - AN OPTIMIZING URN DESIGN
- 8. FINAL COMMENTS

BIG ISSUES

POWER
EFFICIENCY
ESTIMATION
INFERENCE