‘ Succinct Data Structures |

Ian Munro

University of Waterloo

Joint work with David Benoit, Andrej Brodnik, S. Srinivasa
Rao, Rajeev Raman, Venkatesh Raman, Adam Storm et al

How do we encode a large tree or other combinatorial
object of specialized information

... €even a static one

in a small amount of space

and still perform queries in constant time ???

Example of a Succinct Data Structure:
The (Static) Bounded Subset

Given: Universe of n elements [0,...n-1]

and m arbitrary elements from this universe

Create: a static structure to support search in
constant time (Ig n bit word and usual operations)

Using: Essentially minimum possible # bits ... 1g((3))

Operation: Member query in O(1) time
(Brodnik & M.)

‘Focus on Treesl

.. Because Computer Science is .. Arbophilic

- Directories (Unix, all the rest)

- Search trees (B-trees, binary search trees, digital
trees or tries)

- Graph structures (we do a tree based search)
- Search indices for text (including DNA)

‘A Big Patricia Trie / Suffix Triel
/ |
AWANS
A

100011

®m Given a large text file; treat it as bit vector

m Construct a trie with leaves pointing to unique locations in text that
“match” path in trie (paths must start of character boundaries)

m SKkip the nodes where there is no branching (so n-1 internal nodes)

‘Space for Treesl

Abstract data type: binary tree
Size: n-1 internal nodes, n leaves
Operations: child, parent, subtree size, leaf data

Motivation: “Obvious” representation of an n node
tree takes about 6 n Ig n words (up, left, right, size,
memory manager, leaf reference)

i.e. full suffix tree takes about 5 or 6 times the space
of suffix array (i.e. leaf references only)

‘Succinct Representations of Treesl

Start with Jacobson, then others:

There are about 4n/(7wn)*? ordered rooted trees, and
same number of binary trees

Lower bound on specifying is about 2n bits

What are the natural representations?

‘Arbitrary Ordered Trees |

m Use parenthesis notation
= Represent the tree

m As the binary string (((())O))((())()())): traverse tree
as “(*“ for node, then subtrees, then *)”

m Each node takes 2 bits

Heap-like Notation for a Binary Tree

Add external nodes
Enumerate level by level

Store vector 11110111001000000 of length 2n+1

(Here don’t know size of subtrees; can be overcome. Could use
isomorphism to flip between notations)

‘HOW do we Navigate? |

Jacobson’s key suggestion:
Operations on a bit vector

rank(x) =# 1’s up to & including x
select(x) = position of xt 1

So in the binary tree

leftchild(x) = 2 rank(x)
rightchild(x) =2 rank(x) + 1
parent(x) = select(|_x/2J)

‘Rank & Selectl

Rank - Auxiliary storage ~2 n lg lg n / lg n bits

#1°s up to each (Ig n) " bit
#1’s within these too each Ig n'! bit

Table lookup after that

Select - a bit more complicated but similar notions

Key issue: Rank & Select take O(1) time with Ig n bit
word (M. et al)

Aside: Interesting data type by itself

‘ Other Combinatorial Objects |

Planar Graphs (Lu et al)
Permutations [n]— [n]
Or more generally
Functions [n] — [n]

But what are the operations?

s Clearly 7(i), but also 7-1(i)
And then 7%(i) and 7%(i)

‘Permutations: a Shortcut Notationl

Let P be a simple array giving 7; P|[i] = «|i]

Also have BJi]| be a pointer t positions back in (the
cycle of) the permutation; B[i]= n"'[i] .. But only
define B for every tth position in cycle. (tis a
constant; ignore cycle length “round-off”)

— T
L—OTOTRCOTOTOO—E
v
So array representation
P=]8 412 513 x x 3 x2 x101]

1 2 3 4 5 6 7 8 910 11 12 13

‘ Representing Shortcuts |

In a cycle there is a B every t positions ...

But these positions can be in arbitrary order
Which i’s have a B, and how do we store it?

Keep a vector of all positions

0 indicates no B

1 indicates a B

Rank gives the position of B[“1”’] in actual B array
So: 7(i) and 7-'(i) in O(1) time & (1+¢)n Ig n bits

‘Getting n lg n Bits: an Asidel

This is the best we can do for O(1) operations
But using Benes networks:
1-Benes network is a 2 input/2 output switch

r+1-Benes network ... join tops to tops

»
g I <
»

R-Benes Network

R-Benes Network

‘A Benes Networkl

Realizing the permutation
35781642)

‘What can we do with it? |

Divide into blocks of Ig Ig n gates ... and encode their
actions in a word .. Taking advantage of the
regularity of the address mechanism

and
Also modify the approach to avoid power of 2 issue
So we can trace across a path in time O(lg n/(Ig Ig n)

This is the best time we can get for 7 and 7! in
minimum space

‘ Back to the main track: Powers Of 19 I

Consider the cycles of
(268)(35910)(417)

Keep a bit vector to indicate the start of each cycle
(268 35910 417

Ignoring parentheses, view as new permutation, \J.
Note: (i) is position containing i ...

So we have y and ! as before

Use y1(i) to find i, then bit vector (rank, select) to
find ¥ or 'k

‘ Functions |

Now consider arbitrary functions [n]—[n]
“A function is just a hairy permutation”

All tree edges lead to a cycle

= & &

‘Challenges herel

Essentially write down the components in a
convenient order and use the n Ig n bits to describe
the mapping (as per permutations)

To get (i):

Find the level ancestor (k levels up) in a tree
Or

Go up to root and apply f the remaining number of
steps around a cycle

‘ Level Ancestors |

There are several level ancestor techniques using
O(1) time and O(n) WORDS.
Adapt Bender & Farach-Colton to work in O(n) bits

But going the other way ...

‘f‘k is a setl

Moving Down the tree requires care
f3(e) = (o)
The trick:

Report all nodes on a given level of a
tree in time proportional to the
number of nodes, and

Don’t waste time on trees with no
answers

‘Final Function Resultl

Given an arbitrary function f: [n|—|n]

With an n Ig n + O(n) bit representation we can
compute (i) in O(1) time and f%(i) in time O(1 +
size of answer).

‘ General Conclusion |

Interesting, and useful, combinatorial objects can be:
Stored succinctly ... O(lower bound) +o()
So that

Natural queries are performed in O(1) time

This can make the difference between using them and
not ...

