9. THE KIM-SARNAK THEOREM

1. PRELIMINARIES

In this lecture, our goal is to establish the best estimates on the Selberg eigenvalue conjecture
and the Ramanujan conjecture for GL,, due to Kim and Sarnak [2]. Before we do so, let us examine
the averaging idea assuming the Lindel6f hypothesis for automorphic L-functions. This conjecture
predicts that

L(1/2 4+ it,m) = O(f(m)(|t] + 2)°)

where f(m) denotes the conductor of 7.
Given a Dirichlet series

OE o

we can write by partial summation

where

If x is a primitive Dirichlet character mod ¢, suppose that
o
f(s:x) =Y anx(n)/n®
n=1

extends to an entire function and satisfies a “Lindel6f hypothesis” of the form

f(1/2+it,x) = O(¢ (|t + 2)°)
then standard methods of analytic number theory show that
S(t,x) == Zanx(n) < tY2¢.
n<t
Thus, by what was said above, we find
£B,50 = 3 anx(m)n? + O(¢°a' /).
n<z

Now, let us consider an averaging

SN FBx)=>amn™ [ > x(n) | +0(g"a?F).

X7X0 n<z Xxeven,x7#xo
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The inner sum is equal to ¢(q)/2 — 1 if n = £1mod ¢ and —1 if # £1mod g, so that if we choose
T = q, we get

g)—1 _ _ —Bte
> 60 = MU 0 + 0l ) + 0lg ).
xeven ,x#xo
If f(B,x) =0 for all x # xo, we get a contradiction if 5 > 1/2.
Now let 7 be a cuspidal automorphic representation and let us apply this result to

= H L(s,mp x 7p).

p<o0

By the method to be described below, we will get for the Ramanujan and Selberg conjectures the
following estimates:
[R(1j,00)| < 1/4
as well as
laj(p)| < p'/*
for the Satake parameters. The challenge is to do this calculation without the Lindelof hypothesis.
This is the context of the paper by Luo, Rudnick and Sarnak [4].

2. RANKIN-SELBERG THEORY

Let 7 be a cuspidal automorphic representation of GL,,(Ag). For 7y spherical (or unramified),

the gamma factor of L(s, ) is
m

L(s,70) H R(S — 00

where
Tr(s) = 7%/ (s/2).
Selberg’s conjecture is the assertion that $(u; ) =0 for j = 1,...,m.
If m corresponds to a Maass form of eigenvalue A = 1/4 + r2, then Hloo = T, H2,00 = —IiT.

Selberg’s conjecture is then the statement that r is not purely imaginary. In other words, R(1;,00) =
0. The gamma factor of L(s, 7 x 7) is

m
L(s,m X Too) = H I'r(s = tjo0 = Hk,00)-
Jik=1

Let By = 2max R(uj ), then L(s,To X 7o) is holomorphic for R(s) > fFy. If x is a primitive
even Dirichlet character, then the same is true for L(s, (7 X X)oo X 7oo). For x even, primitive of
sufficiently large prime conductor ¢, we have m x x % 7 so that

L(s, Moo X Too)L(s, ™ X x X T)
is entire. Hence, (3 is a “trivial” zero of L(s,m X x) Thus,

LBy, xxx7T) =0
for all such x. In this way, the problem becomes the familiar one of proving that certain twists of

L-functions do not vanish at a given point. We will prove that
2

Z Z L(ﬁ,wxxxﬁ)>>locg2Q

q~Q X#Xo, X even
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for R(B) > 1 — HQ{L—I This is the basic strategy. The same strategy can be applied to improve
estimates on the Ramanujan conjecture at the finite primes. Indeed, for p unramified, we have

m

L(s,mp x p) = [ (1 = aj(@)arlp)p=)~".

Jk=1

Suppose

pP = m]?ix|0‘j(p)|2-

Then,
L(s,mp x tp)
has a pole at s = 8y. Hence, the partial L-function
L@ (s, x &) = L(s,mp X 7tp) T L(s,m X )
has a trivial zero at s = 3y. The same is true for all twists
LP)(s,m x x x 7)

for characters x with x(p) = 1. By choosing special ¢’s as in [6], one deduces the analogous theorem.
Thus, this argument puts both the finite and infinte versions of the Ramanujan conjectures on
the same footing.

3. AN APPLICATION OF THE DUKE-IWANIEC METHOD

We begin by noting that if

and
L(s,mx x X 7) = Z b(n)x(n)n™*

then the twisted L-function satisfies a functional equation of the form
Als, T x x X T) =€(s,m X x X T)A(l — s, X X X 7)

where the global epsilon factor is given by
2

e(s,m x x x @) = x(f(m x 7))e(s,m x T)e(s, x)™
and this can be shown to be equal to
X(f (X B)TO)™ g™ e(s,m x &)

which involves a bit of representation theory (see [4]).
We now apply the argument of Duke and Iwaniec [1]. Let f € C¢°(0,00) with

Awfumx:
/ 0

Thus, k(s) is entire, rapidly decreasing and k(0) = 1. For z >0, let

1 _,ds
Fi(z) = — /(2) k(s)z

Set

271 s
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and p
1 _.4as
where 3
G(s) = L(1 — 8, Moo X Too)

L(s, Moo X o)
Recall that
Bo = 2max R(poo())

and we assume 0 < R(f) < 1.

Lemma 1. (1) Fi(z) and Fy(x) are rapidly decreasing as © — oo.
(2) Asxz — 0,
Fi(z)=1+0(@=")
for all N > 1.
(3) Asz — 0,

Fy(z) < 14 gt=ho—RB)—<

Proof. The asymptotics for Fy(z) follow upon shifting the contour of integration to the right (for
x — o0) and to the left for z — 0). As for F5(z), we apply Stirling’s formula to deduce that G(s)
is of moderate growth in vertical strips and so we may shift contours. To get the behaviour as
z — o0, we shift the contour to the right. For the behaviour as x — 0, we shift the contour to the
left. If R(B) + Bo — 1 < 0, we pick up a simple pole at s = 0 which gives F»(xz) = O(1). Otherwise,
we pick up the first pole at s = 8+ By — 1 and there are none to its right. In this case, we get the
bound

Fy(z) < o' ~Po—RB) (—10g z)4!
where d < m? is the maximal order of a pole of

L(s, Moo X Too)

on the line R(s) = fo.

The next step is to derive the “approximate functional equation” in the following form. With F;
and F; defined as above, for x # xo mod ¢, with ¢ coprime to the conductor of 7, and 0 < R(5) < 1
we have for IT =7 x 7,

L(B.1 ) = 3 X vy 4 (e g™ ) Z P £y 0™ Fam¥ £,
n=1 n=1
To see this, consider the integral
1 sds = b(n)x(n) [ 1 sds) |
2mi o k(s)L(s+3,Ixx)Y ~ _;T (2—7”/) k(s)(Y/n) ) = EZ: F1 (n/Y).

By the lemma, this converges absolutely and again by the lemma, we may shift the contour to
R(s) = —1. Thus,
1 ds

1 ds
— L II Y’ — = L(B,11 — L II Y —
s Ly MR+ B0V = BE ) + g [ kLG + A Tx00Y
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Applying the functional equation to the second integral, we get

zim' k()7 (m x B)x(F)T00™ (Fg™)* PG(s + B)L(L -5 — Bom x QY2
(-1 p

We now change s to —s and integrate term by term to get
7(m x ®)x(f)7(x) 52 (nY/fq™).

We sum this over the non-trivial even characters mod g and apply the orthogonality relation noted
before, to obtain several sums. The first sum to consider is

b(n)x(n qg—1 b(n b(n
> Y YR -2 Y Brem - ¥ Bawm
g~Q x#Xxo,xeven n q~Q n=+1(q) 9~Q (n,q)=1
We single out the contribution from n = 1:

q q-— _ cQ?
rom = T o) ~ 1%
~Q q~Q

for some positive constant ¢ as we will choose Y so that Q K ¥ <« sz. In fact, we will choose
Y = Q(m2+1)/2_
The sum over n = 1 mod g with n # 1 gives

> Y Brem-Lippem| ¥ 57

g~Q n=1mod g¢,n#1 q~Q,q|(m—1),m#1

which is
<<QZ ﬂ "B m/Y)),

where we have used the fact that for m ;é 1, the number of representations n =1+dg =14+ diqx
for fixed n is O(n¢) for any € > 0. Now use

Fl(.'E) ~1
as £ — 0 to get that this is
< QYl—%(ﬂH—e

Similarly, the same estimate holds for terms n = —1 mod ¢. To treat the second terms arising from
the approximate functional equation, we use

> Xmx(H)rO0™ < g
X#X0,X even
by Deligne’s bounds for hyperkloosterman sums. Thus, we get

_ b(n)x(n :
St Y (o™ 0
q~Q X#X0, X even
which by Deligne’s bound is

2 — b(n m m
< 2 (fgm)TRE 3 nl_(mzﬂ)q( 2Ry Y/ fqm).

~Q (n,q)=1
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This is easily estimated by partial summation as

m2\—R(8) (m+1)/2 [ m2y_dt
< ZQ(fq ) /1 B R
qN

upon using the fact that

Z b(n) L z.

n<z

Now using the bound for Fy(z) provided by the lemma leads to a final estimate of
< Q1+(m2+1)/2y—§R(ﬂ)

because F is rapidly decreasing. With our choice of Y, we see that the main term is bigger than
the error term if

Bg>1-—

m24+1
This leads to:

Theorem 2. Let 7 be a cuspidal automorphic representation of G Ly, (Ag) with mo spherical. Then,
1 1
R, <= — .
In a similar way, by following the Duke-Iwaniec method [1] one gets the estimate

1
m24+1

1
In [2] the method described is actually applied to
f(s) = L(s, ,Sym?),

which was shown by Kim [3] to be holomorphic if 7 is not self-contragredient. The functional
equation was established by Shahidi [7]. If x is a Dirichlet character of conductor g which we take
to be prime and large, we have

L(s,m x x,Sym?) = L(s,w,Sym? x x?)

so that as long as x not one of at most two characters mod ¢, m X x is not self-contragredient.
It will be noted that the positivity of the b(n) was not used in a vital way and only the weaker
estimate

Z b(n) Lz

n<z

was used. Thus, we may apply the method to f(s) above and deduce as in [2] the following:

Theorem 3. Let w be a cuspidal automorphic representation of GLy(Ag). For my unramified,

1 1
m(l‘j,ooﬂ < 9 Wa

and for p < oo at which mp is unramified,
1 1

Togy, lajpll < 5 = sy
’ (n+1)
2 nntl4g
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Applying this to GLy over the rational number field gives

7 .
Rtjoe)| < 5p0 5= 1,2

when 7y, is unramified. If p < co and m, is unramified, we have

7 .
log lall < 57 G =1,2.

For the Selberg eigenvalue conjecture, this translates as

975
> 212 _ 938,
M Z 1096 38

For the general number field, one has the weaker bound of 1/2 — 1/(n? + 1) (see [5]).
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