5. POINCARE SERIES

1. POINCARE SERIES FOR SLy(Z)
The Poincaré series for SLo(Z) are defined by

az+b

L 3 s i
(e,d)=1

where a,b are any integers such that ad — bc = 1. Observe that if r = 0, this reduces to the
classical Eisenstein series Eg(z) (upto a constant). Thus, the Poincaré series are to be viewed as
generalisations of Eisenstein series. It is easy to see that the inner summand does not depend on
the choice of a solution. Indeed, by the Euclidean algorithm, any other solution for (a,b) has the
form (a + tc, b+ td) and

(a+tc)z+ (b+1td) az+b

= +t, teZ
cz+d cz+d
so that
2mir (82 +t) _ 2mir(82E])

We can rewrite the series in a more invariant form by setting

. b
](’Y,Z):CZ—I—d, 7:(3 d)

and then '
Gr(z) = Y j(y,2)7kemr(2),
Y€l o \I'

The important thing to note is that G,(z) is a modular form of weight k. To see this, let § € ' =
SLy(Z). Then,

Gr(62) = Y j(7,82) Ferm (%),
YEL s \I'
Now, we have the so-called cocycle relation:

§(v0,2) = j(7,02)5(4, 2)
as is easily verified, so that

: _ j(v9,2)
J(v,02) = (6.2)

and

G(0z) = j(6,2)F > j(yd,z) Felmr0%)
YEL s \T

= j(6,2)"Gr(2).

This is the text of Lecture 5 by Ram Murty given on February 27, 2003 at the Fields Institute, Toronto, Canada.
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Holomorphy is easy to verify using standard tests of complex analysis. In addition, G, (iocc) =0
if r > 1. We conclude that for every r > 1, G,(z) is a cusp form of weight k. Thus, Poincaré
series give explicit constructions of cusp forms. For a detailed treatment of this theory, we refer
the reader to Rankin’s book [4] (especially Chapter 5).

Now let f be any cusp form of weight k. We would like to compute the inner product (f,G,).

First observe that e2™? = 27 . ¢ =27 g0 that

e2miz — T2mMT | =27y _ e—27rz(z)'

Thus,
(f,G,) = / Z f(z)e 27rzr7z(cz_|_d) —k kd.’lidy
\H YETo\T y?
e k dxdy
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= X Fr2)8 (ke ) 000
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Now from the Fourier expansion of f(z):

00
— § :aneQﬂ'mz i 6727my
n=1

we see that the z-integral picks up the r-th Fourier coefficient. Thus,

(.f, Gr) = ar/ 6_47TTyyk_2dy-
0

By setting 47ry =t in the integrand and simplifying, we deduce

Theorem 1. Let f be any cusp form of weight k for I'. Then,
'k —1a,
(f,Gr) = “dmr)F1
An important corollary is:

Corollary 2. Every cusp form is a finite linear combination of Poincaré series Gy (z).

Proof. The set of Poincaré series spans a closed subspace in the space of cusp forms. If f is a cusp
form not in this space, all of its Fourier coefficients must vanish by the previous theorem. Thus,
the orthogonal complement is zero. 0

As an example, consider the case k = 12. Each of the G,(z) is a cusp form of weight 12. But
any cusp form of weight 12 must be a constant multiple of A, Ramanujan’s cusp form. Thus,

Gr(z) = v A(2).
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What is ¢,?7 By the above theorem,
L(11)7(r)

(8 Gr) = gy

=c (A A).
Hence,

_ (4mr)t! 12 ———dzdy
) = S [ vAEGE

2. FOURIER COEFFICIENTS AND KLOOSTERMAN SUMS

Emanating largely from the work of Petersson [3]in the 1930’s and Selberg [5], an explicit formula
can be given for the Fourier coefficients of G, (z). This striking formula involves the Kloosterman
sums and their appearance has opened new connections to the Selberg eigenvalue conjecture as well
as applications to classical questions of analytic number theory. We now derive this remarkable
formula.

We begin by writing

0
Gr (Z) _ Z grn627rinz.
n=1
Then,

1
Grn = / Gr (m)e—Zmnm_
0
More precisely, for reasons of convergence, we should consider
1440 _
/ G’r (z)e—anz
10
with & > 0, but we leave this technical modification to the reader. We have

1 . (azx .
Grn Z% Z / (cx—I—d)_ke%”(czidb)*%mmdx_
(c;d)=1"0

Put cx + d = t. The argument in the exponential becomes

T /a 7 nd+ar nt r
—|=(t—d b)——t—dzi————
t (c( )+ c( ) c c tc

since ad — bc = 1. Thus,

1 1 2mi o0 2mi (1
_ - - 7t (nd+ar) —k ==t (F+nt
grn = 5 Z Z € /_Oot € (F+n0) gy

c£0 ¢ d(modc)
ad=1(modc)

because

1 ) )
/ tike% (nd—l—arfnt)e— 27’t" dt

(cd)=1"0

depends only on d (mod ¢). Writing d as dy + (m + 1)c with varying m, we transform the integral
from 0 to 1 into an integral from —oo to co. This integral turns out to be a Bessel function:

oo+-ci 2
/ t7% exp (—ﬂ (% + nt)) dt = 2x(n/r) kD2 J_ (4ny/rn/c)
c

—oo+ci
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where

LM@—JiAF“%WAMﬁ

2w
where C' is the unit circle. The sum
S(r,n,c) := Z ¢’ (nd+ar)

d(modc)
ad=1(modc)

is called a Kloosterman sum. Using this notation, we obtain the beautiful formula due to Petersson:

Grn = (n/r)(kil)/2 {6Tn o Z Mjkl (@) }
c=1

where 6., denotes the Kronecker delta function.
We have already noted that the Poincaré series span the space of cusp forms. Thus, to prove the
Ramanujan conjecture, it suffices to show that

Grn = O(n%—'—e)

for every r. This is tantamount to showing that the expression in parentheses in the above sum is
O(n®).
Selberg, using this expression and Weil’s estimate for Kloosterman sums:
[S(r,n,¢)| < d(c)e'?(r,n, ) '/?
as well as the bound
Je—1(z) < Amin(z* 1, z71/?)
obtained that
9rn = O(nk/2_1/4+€)'
Note that this is better than what we obtained earlier by the Rankin-Selberg method. Since the
estimate was obtained crudely, Selberg felt that there must be cancellation among the Kloosterman

sums. This led him to formulate the following conjecture (which was also arrived at independently
by Linnik):

Conjecture. (Selberg-Linnik)

for z > ged(r,n) /2t for any e > 0.

In his 1965 paper, Selberg stated that this would lead to a proof of the Ramanujan conjecture
(for Maass forms as well) but did not indicate a proof. We will indicate below how such a proof
can be obtained for the full modular group. The argument is adapted from the author’s [2].

Let us first observe that Weil’s estimate for Kloosterman sums leads to the estimate

G(z) = O(z'?log z)

for (r,n) = 1. Kuznetsov[1] proved that G(z) = O(z'/5*¢), but the O-constant depends on r,n so
it is not applicable to the estimation of the Fourier coefficients. Let

H(z):= ZS(T,TL,C).

c<z
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By partial summation, the Selberg-Linnik conjecture is equivalent to
H(z) = O(z'™°).
We begin by considering
S(r,n,c 4m\/rn 4m\/Tn 4/
Z ( )Jk—l ( ) = Z G(c) {Jk—l ( ) — Jp—1 ( )}
c c c+1 c
c>\/n c>/n
by partial summation. By the mean value theorem, the expression in parentheses is

T (e

for some &, € (4m/rn/(c + 1),4m/rn/c). Using the estimate
Ji_(z) < z7 Y2

we get

47/
Z S(T,naC)Jk1< n Tn) < nl/4 Z ng(/(;” < nf,
C C C
c>\/rn c>v/n
by the Selberg-Linnik conjecture. Thus, we need only consider

S(r,n,c) Ay/rn
y S, -
c c
c<v/n
To estimate this, we apply an inductive argument. As there are no cusp forms of weight 10, we

have g A
3 S (4 g
c<vn

So, if for example, we were trying to establish the conjecture for k¥ = 12, then it suffices to estimate

for kK = 10 the quantity
S(r,n,c 4dm\/rn 4dm\/rn
> S foen (B08) o () )

c<vn
By the familiar identity

2kJy ()

= Ji+1(2) + Jp—1(2)

% S S0, )i (4”\0/’%) .

e<vn
Again, by partial summation, we may write this as

1 47/ 4m/
Jr X () - () |
n o c c
Again, the expression in the brackets is

it suffices to estimate

Adm\/rn
m%(&)-

Using the estimate
Ji(z) < z71/?
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as before, and the fact that H(c) = O(c!*), we deduce a final estimate of O(n¢) as desired. This
completes the proof of the fact that the Selberg-Linnik conjecture implies the Ramanujan conjecture
(for the full modular group). A similar argument can be applied to higher levels. However, the
non-existence of cusp forms of small weight is not guaranteed. In this case, we exploit the fact that
we know the Ramanujan conjecture in the weight two case (a result due to Eichler and Shimura).

3. THE KLOOSTERMAN-SELBERG ZETA FUNCTION

In order to gain more insight into the Selberg-Linnik conjecture, we will consider (with Selberg[6])
the series

Z(r,n,s) = ZM

2s
Z
To study this series, Selberg [6] considers the cognate Poincaré series
Un(er9) = 3 S(a)pemne
Too\T

Clearly, U, is I'-invariant. Moreover, if
0? 0?
A=—9? ==+
i (w i ay?)

AU, (z,8) = s(1 — 8)Uyn(z, s) + 4nnUy (2, s + 1)s.

As we will show next time, the Fourier expansion of Uy(z, s) contains Z(r,n, s) in it. This allows
us to relate the eigenvalues of A with the abscissa of convergence of Z(r,n,s). More precisely,

then

Un(2,5) = 3 Balim,y,s)e?™™

m=—o0
where
_ 1 S(m,n,c) { , [ 2mn dv
Br(m,y, s) = Gpmy’e 7™ + 2y 2 18/ —2mimyv — :
n(m,y, s) nmY € + 2 ; |C|25 Y . exXp TImyv CQy(l —iv) ) (1+ 1)2)5
It then turns out that
o0 . o 7 N
_ S(n,m,c) sinmws aj(n)a;(m) 1. 1
(2my/nm)?* Z |c’|25’ = Z ]COShjrrj I'(s— 3+ ir;)T(s — 3~ irj)
=1 j=1

5nm P(S) 1 *° h(’l‘, S)
C2r T(1—s) o /_oo

(n/m)WO'QiT- (m)O'_Qz'T- (m) m T
where
Sin7TSI‘(S _ 1 +ir)[(s — L ir)
2 2 2
and the aj(n)’s are the Fourier coefficients of the Maass form corresponding to the eigenvalue
Aj=1/4+ 7"]2-. This remarkable formula establishes a striking relationship between the eigenvalues

A; and the Kloosterman-Selberg zeta function.

h(r,s) =
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