3. THE RANKIN-SELBERG METHOD

1. Eisenstein series and non-vanishing of $\zeta(s)$ on $\Re(s)=1$

I want to indicate a proof of the non-vanishing of $\zeta(s)$ on $\Re(s) = 1$ which uses the theory of Eisenstein series and as a consequence does not use the Euler product of $\zeta(s)$ as most conventional proofs do. The idea was used by Jacquet and Shalika [4] in their general result about the non-vanishing on $\Re(s) = 1$ of automorphic *L*-functions associated with GL_n .

Recall that

$$E(z,s) = \pi^{-s} \Gamma(s) \frac{1}{2} \sum_{(m,n) \neq (0,0)} \frac{y^s}{|mz + n|^{2s}}.$$

Notice that we may also write this as

$$E(z,s) = \pi^{-s} \Gamma(s) \frac{1}{2} \zeta(2s) \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \Im(\gamma z)^{s}$$

where Γ_{∞} is the stabilizer of the cusp at infinity.

We showed last time that

$$E(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)y^s + \pi^{s-1}\Gamma(1-s)\zeta(2-2s)y^{1-s} + \sum_{r \neq 0} |r|^{s-1/2}\sigma_{1-2s}(|r|)\sqrt{y}K_{s-1/2}(2\pi|r|y)e^{2\pi i rx}$$

where $\sigma_v(n) = \sum_{d|n} d^v$ and

$$K_s(y) = \frac{1}{2} \int_0^\infty e^{-y(t+t^{-1})/2} t^s \frac{dt}{t}.$$

One can prove directly that $K_s(y) = K_{-s}(y)$ and $r^s \sigma_{-2s}(r) = r^s \sigma_{2s}(r)$ which allows us to deduce the functional equation of E(z,s) from its Fourier expansion.

This result lies at the heart of the Langlands-Shahidi method of analytic continuation of Eisenstein series. It is also at the core of the Rankin-Selberg method of analytic continuation which we outline below.

Now suppose that $\zeta(1+it_0)=0$ for some t_0 real. Then, $\zeta(1-it_0)=0$ also. We put $s=(1+t_0)/2$ in E(z,s). Then, the constant term vanishes and we get a Maass cusp form:

$$E(z, (1+it_0)/2) = 4\sqrt{y} \sum_{r=1}^{\infty} r^{it_0/2} \sigma_{-it_0}(r) \cos(2\pi rx) \int_0^{\infty} e^{-\pi ry(t+t^{-1})} \frac{dt}{t^{1-it_0/2}}.$$

Using standard estimates for the integral, one can show that the sum is $O(e^{-cy})$ for some c > 0. Hence the constant term of $E(z, (1+it_0)/2)$ is zero and we have a genuine Maass cusp form on our hands.

In particular,

$$\int_0^1 E(x+iy, (1+it_0)/2) dx = 0.$$

This is the text of Lecture 3 by Ram Murty given on February 6, 2003 at the Fields Institute, Toronto, Canada.

Mulitplying this equation by y^{s-2} and integrating from 0 to ∞ , we get

$$\int_0^\infty \int_0^1 E(x+iy,(1+it_0)/2)y^{s-2}dxdy = 0.$$

Now we use the fundamental idea that

$$\bigcup_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \gamma(\Gamma \backslash H) = [0, 1] \times [0, \infty],$$

usually referred to as the "unfolding" of the domain of integration. Thus,

$$\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \int_{\gamma(\Gamma \backslash H)} E(z, (1+it_0)/2) \Im(z)^s \frac{dxdy}{y^2} = 0.$$

As $E(\gamma z, s) = E(z, s)$, we may change variables and get:

$$0 = \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \int_{\Gamma \backslash H} E(z, (1+it_0)/2) \Im(\gamma z)^s \frac{dxdy}{y^2} = \int_{\Gamma \backslash H} E(z, (1+it_0)/2) E(z, s) \frac{dxdy}{y^2},$$

valid for all $s \in \mathbb{C}$.

From the definition of E(z,s) (or its Fourier expansion) we see that

$$E(z, \overline{s}) = \overline{E(z, s)}.$$

Therefore, putting $s = (1 - it_0)/2$, we get from the penultimate equation,

$$0 = \int_{\Gamma \backslash H} |E(z, (1 + it_0)/2)|^2 \frac{dx \, dy}{y^2}.$$

Thus, the integrand is identically zero. That is, we have proved that $\zeta(1+it_0)=0$ implies that

$$E(z, (1+it_0)/2) \equiv 0.$$

We now show that this is a contradiction. We do this by showing that some Fourier coefficient of $E(z, (1+it_0)/2)$ is non-zero. That is, we need to check

$$\int_0^\infty e^{-\pi r y(u+u^{-1})} \frac{du}{u^{1+it_0}} \neq 0.$$

If we set $u = e^{\theta}$, we have to show that

$$\int_{-\infty}^{\infty} e^{-\pi r y(e^{\theta} + e^{-\theta}) - it_0 \theta} d\theta \neq 0.$$

In other words, we must show that

$$\int_0^\infty e^{-\pi r y(e^\theta + e^{-\theta})} \cos t\theta d\theta \neq 0.$$

This integral is of the form

$$\int_{0}^{\infty} e^{-y(a^{\theta}+a^{-\theta})} \cos \theta d\theta, \quad a > 1.$$

We would like to determine its behaviour as y tends to infinity. To do this, we can apply Laplace's saddle point method: if f has two continuous derivatives, with f(0) = f'(0) = 0 and f''(0) > 0, and f is increasing in [0, A], then

$$I(x) := \int_0^A e^{-xf(t)} dt \sim \sqrt{\frac{\pi}{2xf''(0)}}$$

as x tends to infinity and provided $I(x_0)$ exists for some x_0 . A slightly generalized version of this says that if g is continuous on [0, A], then

$$\int_0^A g(t)e^{-xf(t)}dt \sim g(0)\sqrt{\frac{\pi}{2xf''(0)}}.$$

Now choose $f(t) = a^t + a^{-t} - 2$, $g(t) = \cos t$ so that

$$e^{-2x} \int_0^\infty e^{-x(a^{\theta}+a^{-\theta}-2)} \cos\theta d\theta \sim e^{-2x} 2 \log a \sqrt{\frac{\pi}{x}}$$

from which we see that $E(z,(1+it_0)/2) \not\equiv 0$, as required. This gives the desired contradiction.

It is possible to deduce the non-vanishing of the above integrals directly without appealing to Laplace's saddle point method. With some work, it may also be possible to derive a zero-free region for $\zeta(s)$.

2. Explicit construction of Maass cusp forms

The first examples of Maass cusp forms were constructed by Maass [6] in 1949. Alternate treatments of this subject can also be found in [2] and [8].

Let F be a quadratic field over \mathbb{Q} with narrow class number one. (This means that the order of the narrow ideal class group is one, where the equivalence relation for narrow ideals is modulo principal ideals with a totally positive generator.) Let ψ be a Hecke character. Such a character has the form $\psi = \psi_{\infty} \psi_f$ for some some finite order character ψ_f with conductor f. We will consider only characters with $f = O_F$ so that $\psi(\mathfrak{a}) = \psi_{\infty}(\alpha)$ where α is a totally positive generator of \mathfrak{a} . Let v and e be as follows. v is purely imaginary, and e, equals 0 or 1. Then

$$\psi_{\infty}(x) = \operatorname{sgn}(x_1)^e \operatorname{sgn}(x_2)^e |x_1/x_2|^v$$

where x_1 and x_2 are the Galois conjugates of x. It is necessary to have that $\psi_{\infty}(\eta) = 1$ for $\eta \in O_F^{\times}$. The fact that F has narrow class number one implies there is a fundamental unit $\epsilon > 1$ whose norm is -1. This forces $v = mi\pi/2 \log \epsilon$ with m an ordinary integer. If $m \neq 0$, we get a family of Maass cusp forms:

$$heta_{\psi}(z) = \sum_{\mathbf{a}} \psi(\mathbf{a}) \sqrt{y} K_v(2\pi N(\mathbf{a})y) \cos 2\pi N(\mathbf{a})x$$

if e = 0.

If e = 1, we may take

$$heta_{\psi}(z) = \sum_{\mathfrak{a}} \psi(\mathfrak{a}) \sqrt{y} K_v(2\pi N(\mathfrak{a}y) \sin 2\pi N(\mathfrak{a})x.$$

Maass [6] (see [2] also) shows that each of these is a cusp form for $\Gamma_0(D)$ where D is the quadratic field of F. The corresponding eigenvalues is

$$\frac{1}{4} + \frac{m^2 \pi^2}{4(\log \epsilon)^2}.$$

This construction is really a special case of Langlands functoriality, namely automorphic induction.

The fact that θ_{ψ} is a Maass form is proved using converse theory in [2]. In general, one expects a map

$$A(K) \to A(k)$$

from the space of automorphic representations of $GL_n(\mathbb{A}_K)$ to the space of automorphic representations of $GL_{nd}(\mathbb{A}_k)$ where d = [K : k] where the map is given as follows. Let Π be a cuspidal automorphic representation of K and suppose

$$L(s,\Pi) = \prod_{w} L(s,\Pi_w),$$

where the product is over all places w of K. One expects that there is a π which is a cuspidal automorphic representation of k so that

$$L(s, \pi_v) = \prod_{w|v} L(s, \Pi_w).$$

This special case of functoriality has been established by Arthur and Clozel [1] when K/k is cyclic.

3. The Rankin-Selberg L-function

The unfolding technique of section 1 has wider ramifications. It can be used to establish the analytic continuation and functional equation for a large class of *L*-functions which fall under the umbrage of Rankin-Selberg theory.

Let $F: H \to \mathbb{C}$ be a Γ -invariant function which is of rapid decay (that is, $F(x+iy) = O(y^N)$ for all $N \ge 1$.) Let

$$C(F,y) = \int_0^1 F(x+iy)dx, \quad y > 0$$

be the constant term of the Fourier expansion. Let

$$L(F,s) = \int_0^\infty C(F,y) y^s \frac{dy}{y^2}$$

be the Mellin transform of C(F, y).

Theorem 1. Let $L^*(F,s) = \pi^{-s}\Gamma(s)\zeta(2s)L(F,s)$. Then, L(F,s) has analytic continuation to the whole complex plane, regular everywhere except for a simple pole at s=1 with residue equal to

$$\frac{3}{\pi} \int_{\Gamma \backslash H} F(z) dz.$$

The function $L^*(F,s)$ is regular for all $s \neq 0,1$ and satisfies a functional equation

$$L^*(F,s) = L^*(F,1-s).$$

Proof. The key idea is to use the decomposition described earlier. We have

$$L(F,s) = \int_0^\infty \int_0^1 F(x+iy)y^{s-2} dx dy.$$

Decomposing the domain of integration as in the "unfolding" technique, this becomes

$$=\sum_{\gamma\in\Gamma_{\infty}\setminus\Gamma}\int_{\gamma(\Gamma\setminus H)}F(z)y^{s}rac{dxdy}{y^{2}}$$

This can be rewritten as

$$\sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \int_{\Gamma \backslash H} F(\gamma z) (\Im(\gamma z))^{s} \frac{dx dy}{y^{2}} = \sum_{\gamma \in \Gamma_{\infty} \backslash \Gamma} \int_{\Gamma \backslash H} F(z) (\Im(\gamma z))^{s} \frac{dx dy}{y^{2}}$$

because F is Γ -invariant. Moving the summation inside the integral shows that this is equal to

$$\int_{\Gamma \backslash H} F(z) E(z,s) \frac{dxdy}{y^2}.$$

As E(z,s) has analytic continuation and functional equation, we get the same for L(F,s).

we now give a few examples on how to apply this theorem.

In the special case that f is a cusp form of weight k, we may apply the above result to $F(z) = y^k |f(z)|^2$ which is easily checked to be Γ -invariant.

A straightforward computation shows that the constant term is

$$y^k \sum_{n=1}^{\infty} |a_n|^2 e^{-4\pi ny}.$$

The Mellin transform of the constatut term is

$$\int_0^\infty y^{k+s} \sum_{n=1}^\infty |a_n|^2 e^{-4\pi ny} \frac{dy}{y^2} = (4\pi)^{-s-k+1} \Gamma(s+k-1) \sum_{n=1}^\infty \frac{|a_n|^2}{n^{s+k-1}}.$$

This proves:

Theorem 2. Let f be a cusp form of weight k for $SL_2(\mathbb{Z})$. If

$$f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$$

is its Fourier expansion at infinity, then the Dirichlet series

$$\sum_{n=1}^{\infty} \frac{|a_n|^2}{n^s}$$

has a meromorphic continuation to the whole complex plane. In fact, if

$$\psi(s) = \pi^{-2s-k+1} 2^{-2s} \Gamma(s) \Gamma(s+k-1) \zeta(2s) \sum_{n=1}^{\infty} \frac{|a_n|^2}{n^s}$$

then $\psi(s)$ extends to function which is regular for all $s \in \mathbb{C}$ except at s=1 where it has a simple pole and residue equal to

$$\frac{3}{\pi} \int_{\Gamma \setminus H} y^k |f(z)|^2 \frac{dx dy}{y^2} = \frac{3}{\pi} (f, f).$$

Moreover, $\psi(s)$ satisfies the functional equation $\psi(s) = \psi(1-s)$.

If we apply the theorem of Chandrasekharan and Narasimhan [3] mentioned in the previous lectures, we deduce that

$$\sum_{n \le x} |a_n|^2 = \frac{3}{\pi} (f, f) x^k + O(x^{k-2/5})$$

because twice the sum of the coefficients in the Gamma factors (or equivalently the degree in the sense of Selberg) is equal to 4. By taking a single summand in the sum on the left, we deduce that $a_n = O(n^{k/2-1/5})$. The same technique applied to Maass forms gives us $a_n = O(n^{3/10})$.

If we take f and g to be cusp forms (or even with one of them a cusp form), we consider

$$y^k f(z) \overline{g(z)}$$

which is Γ -invariant. If

$$f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}$$

and

$$g(z) = \sum_{n=1}^{\infty} b_n e^{2\pi i n z}$$

are the respective Fourier expansions at infinity, then the constant term is easily computed to be equal to

$$y^k \sum_{n=1}^{\infty} a_n \overline{b_n} e^{-4\pi ny}.$$

One could also take forms of different weights k_1 and k_2 and consider

$$y^{(k_1+k_2)/2}f(z)\overline{g(z)}.$$

In the end, applying Theorem 1 we deduce that

$$\sum_{n=1}^{\infty} \frac{a_n \overline{b_n}}{n^s}.$$

A suitably normalized version of this series (with appropriate Γ -factors, $\zeta(2s)$ and so forth) extends to a function which is regular everywhere except possibly at s=1 where it may have a simple pole with residue equal to

$$\frac{3}{\pi}(f,g).$$

Thus, if f and g are orthogonal to each other, then the normalized series extends to an entire function.

Kronecker's limit formula states that

$$\lim_{s \to 1} \left[E(z, s) - \frac{1}{s - 1} \right] = \log(e^{\gamma} / 4\pi) - 2\log(\sqrt{y} |\eta(z)|^2)$$

where $\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$, with $q = e^{2\pi i z}$. If f and g are Hecke eigenforms with π_f , π_g being the associated automorphic representations, the Kronecker limit formula allows us to write down an exact formula for the special value $L(1, \pi_f \otimes \pi_g)$.

4. Rankin-Selberg L-functions for GL_n

The general theory for GL_n was initated and developed by Jacquet, Piatetski-Shapiro and Shalika [5], Shahidi [9] and finally completed by Moeglin-Waldspurger [7]. If π_1 and π_2 are cuspidal automorphic representations of GL_m and GL_n of the adele ring over the rationals (say), then the Rankin-Selberg L-function is defined by the Euler product

$$L(s,\pi_1\otimes\pi_2)=\prod_p L(s,\pi_{1,p}\otimes\pi_{2,p})$$

where for all but finitely many primes p, the Euler factors are given by the formula

$$L(s,\pi_{1,p}\otimes\pi_{2,p}) = \prod_{i,j} \left(1 - rac{lpha_{i,p}^{(1)}lpha_{j,p}^{(2)}}{p^s}
ight)^{-1}$$

and

$$L(s,\pi_{r,p}) = \prod_i \left(1 - rac{lpha_{i,p}^{(r)}}{p^s}
ight)^{-1}$$

for r = 1, 2. It is possible to define the Euler factors at all the places so that the final product converges for $\Re(s) > 1$. The completed L-function turns out to be entire unless

$$\pi_2 \simeq \pi_1 \otimes |\det|^{it}$$

for some real number t in which case the function is regular everywhere except at s = 1 - it where it has a simple pole.

REFERENCES

- J. Arthur and L. Clozel, Simple Algebras, Base Change and the Advanced Theory of the Trace Formula, Annals
 of Math. Studies 120 Princeton University Press, Princeton, 1989. MR 90m:22041.
- D. Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, Cambridge, 1997.
- [3] K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma fators and the average order of arithmetical functions, *Annals of Math.*, **76** (2) (1962), 93-136.
- [4] H. Jacquet and J. Shalika, On Euler products and the classification of automorphic representations I, American Journal of Math., 103 (1981), 499-558.
- [5] H. Jacquet, I.I. Piatetski-Shapiro and J. Shalika, Rankin-Selberg convolutions, American Journal of Math., 105 (1983), 367-464.
- [6] H. Maass, Über eine neue Art von nichanalytischen automorphen Funktionen une die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, *Math. Annalen*, **121** (1944), 141-182.
- [7] C. Moeglin and J.-L. Waldspurger, Le Spectre Résiduel de GL(n), Ann. Sci. École Norm. Sup. 4th série 22 (1989), 605-674.
- [8] C.J. Moreno, Explicit formulas in the theory of automorphic forms, Lecture Notes in Mathematics, 626, in Number Theory Day, edited by M.B. Nathanson, Springer-Verlag, 1977, pp. 73-216.
- [9] F. Shahidi, On certain L-functions, American Journal of Math., 103 (1981), 297-355.
- [10] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., (3) 31 (1975), no. 1, 79-98.