3. THE RANKIN-SELBERG METHOD

1. EISENSTEIN SERIES AND NON-VANISHING OF ((s) ON R(s) =1

I want to indicate a proof of the non-vanishing of ((s) on R(s) = 1 which uses the theory of
Eisenstein series and as a consequence does not use the Euler product of ((s) as most conventional
proofs do. The idea was used by Jacquet and Shalika [4] in their general result about the non-
vanishing on $(s) = 1 of automorphic L-functions associated with GLy,.

Recall that

S

Bz, 5) = w*sr(s)% > y

25"
) ™2 T

Notice that we may also write this as

Blz,s) = 7 °T(5)5¢(2) Y S(y2)

YET\T

where I' is the stabilizer of the cusp at infinity.
We showed last time that

E(z,5) = 7T (s)¢(25)y" +7° 7T (1=5)¢(2=25)y"* + Y _ [ 20105 (|r)) VT K o1 /2 (27| |y) >
r#£0
where o, (n) =3, d” and

1 [* - d
K =5 [ e e
0

One can prove directly that K;(y) = K_s(y) and r®o_os(r) = r®o9s(r) which allows us to deduce
the functional equation of E(z, s) from its Fourier expansion.

This result lies at the heart of the Langlands-Shahidi method of analytic continuation of Eisen-
stein series. It is also at the core of the Rankin-Selberg method of analytic continuation which we
outline below.

Now suppose that ((1+itg) = 0 for some ¢y real. Then, ((1—1itg) = 0 also. We put s = (1+1¢)/2
in E(z,s). Then, the constant term vanishes and we get a Maass cusp form:

o0 o
. ; _ - dt
E(z, (1 +ito) /2) = 4@})1 r%/2G_(r) cos(2mr) /0 e D s
<

Using standard estimates for the integral, one can show that the sum is O(e~%) for some ¢ > 0.
Hence the constant term of E(z, (1+itg)/2) is zero and we have a genuine Maass cusp form on our
hands.

In particular,

/1 Bz +iy, (1 + ito) /2)dz = 0.
0
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Mulitplying this equation by y*~“ and integrating from 0 to oo, we get
g

o0 1
/ / E(z + iy, (1 +1it)/2)y* *dxdy = 0.
0o Jo
Now we use the fundamental idea that

U’YEFOO\F 7(F\H) = [Oa 1] X [O, OO],

usually referred to as the “unfolding” of the domain of integration. Thus,

/ BE(z, (1 +ito) /2)3(2) % — .
y€T oo \I' v(T\H) Y
As E(vz,s) = E(z,s), we may change variables and get:
. dzxdy / . dzdy
0= E(z, (1 +1it)/2)S(y2)° = E(z,(1 4+1ty)/2)E(z,8) ——,
> o (2, (1 +it) /2)3(72) ) " (2, (1 +ito) /2) E(2, 5) "

Y€l \T

valid for all s € C.
From the definition of E(z,s) (or its Fourier expansion) we see that

E(2,3) = E(z,s).
Therefore, putting s = (1 — ity)/2, we get from the penultimate equation,

ded
0 :/ Bz, (1 + ite) /2)? 222
T\H )

Thus, the integrand is identically zero. That is, we have proved that (1 + itg) = 0 implies that
E(z, (1 +itg)/2) =0.

We now show that this is a contradiction. We do this by showing that some Fourier coefficient of
E(z, (1 +1itp)/2) is non-zero. That is, we need to check

o 1y du
/0 e Try(utu )u1+z‘to #0

, we have to show that

<o 9 +e=9)—ito
/ e wry(e?+e=%)—ity do # 0.
—00

If we set u = €’

In other words, we must show that
/oo e~ mU( ™) cog 104 # 0.
0

This integral is of the form

o0
/ e Y@ +a7%) ¢g 0do, a > 1.
0

We would like to determine its behaviour as y tends to infinity. To do this, we can apply Laplace’s
saddle point method: if f has two continuous derivatives, with f(0) = f/(0) = 0 and f”(0) > 0,
and f is increasing in [0, A], then

g—— il
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as z tends to infinity and provided I(z) exists for some zy. A slightly generalized version of this
says that if g is continuous on [0, A], then

A
Ot g(0) T
| a0~ 500), [

Now choose f(t) = a' +a~* — 2, g(t) = cost so that

& 0., ,—6 T
6_21/ e #4077 =2) 0650dh ~ e **21og ay/—
0 T

from which we see that E(z, (1 +itg)/2) # 0, as required. This gives the desired contradiction.
It is possible to deduce the non-vanishing of the above integrals directly without appealing to
Laplace’s saddle point method. With some work, it may also be possible to derive a zero-free region

for ((s).

2. EXPLICIT CONSTRUCTION OF MAASS CUSP FORMS

The first examples of Maass cusp forms were constructed by Maass [6] in 1949. Alternate
treatments of this subject can also be found in [2] and [8].

Let F be a quadratic field over Q with narrow class number one. (This means that the order
of the narrow ideal class group is one, where the equivalence relation for narrow ideals is modulo
principal ideals with a totally positive generator.) Let 1 be a Hecke character. Such a character
has the form 1) = 151y for some some finite order character 4 with conductor f. We will consider
only characters with f = Op so that ¥(a) = () where « is a totally positive generator of a.
Let v and e be as follows. v is purely imaginary, and e, equals 0 or 1. Then

Poo(2) = sgn(x1) sgn(x2)®|1/z2|”

where z; and z, are the Galois conjugates of z. It is necessary to have that 1 (n) = 1 for n € Oj.
The fact that F' has narrow class number one implies there is a fundamental unit € > 1 whose norm
is —1. This forces v = min/2log e with m an ordinary integer. If m # 0, we get a family of Maass
cusp forms:

Oy(2) = 1(a)y/yK,(2mN (a)y) cos 2r N (a)x

if e = 0.
If e = 1, we may take

Op(2) = > (a)y/yK, (2N (ay) sin 27N ().

Maass [6] (see [2] also) shows that each of these is a cusp form for I'g(D) where D is the quadratic
field of F'. The corresponding eigenvalues is

1 m2r?

— _|_ .
4 4(loge)?

This construction is really a special case of Langlands functoriality, namely automorphic induc-
tion.

The fact that 6, is a Maass form is proved using converse theory in [2]. In general, one expects
a map

A(K) = A(k)
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from the space of automorphic representations of GL,(Ag) to the space of automorphic represen-
tations of GL,4(Ay) where d = [K : k] where the map is given as follows. Let II be a cuspidal
automorphic representation of K and suppose

L(s,T) = [ L(s, ),

where the product is over all places w of K. One expects that there is a m which is a cuspidal
automorphic representation of k so that

Ls,my) = H L(s,I1,).
w|v

This special case of functoriality has been established by Arthur and Clozel [1] when K/k is
cyclic.

3. THE RANKIN-SELBERG L-FUNCTION

The unfolding technique of section 1 has wider ramifications. It can be used to establish the
analytic continuation and functional equation for a large class of L-functions which fall under the
umbrage of Rankin-Selberg theory.

Let F' : H — C be a I'-invariant function which is of rapid decay (that is, F(z +1iy) = O(y~) for
all N > 1.) Let

1
C(F,y) = / F(z +iy)dz, y>0
0

be the constant term of the Fourier expansion. Let

LFs) = [ CEwyS
0 Y
be the Mellin transform of C(F,y).

Theorem 1. Let L*(F,s) = n~T'(s)((2s)L(F,s). Then, L(F,s) has analytic continuation to the
whole complex plane, reqular everywhere except for a simple pole at s = 1 with residue equal to
3
- F(z)dz.
™ JT\H
The function L*(F,s) is regular for all s # 0,1 and satisfies a functional equation
L*(F,s) = L*(F,1 — s).

Proof. The key idea is to use the decomposition described earlier. We have

oo pl
L(F,s) = / / F(z + iy)y* 2dzdy.
o Jo

Decomposing the domain of integration as in the “unfolding” technique, this becomes

sdzdy

= F(z)y
7€§\r /Y(F\H) y?

This can be rewritten as

S(vz s dzd = 2)(S(vz
/F\HF‘”Z)(““ = Y /F\HF‘ )(S(v2))

YET\T

sdzdy
y2

YET\T
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because F' is I'-invariant. Moving the summation inside the integral shows that this is equal to
dxdy

/F\H F(2)E(z,s) )2

As E(z,s) has analytic continuation and functional equation, we get the same for L(F, s).
O

we now give a few examples on how to apply this theorem.

In the special case that f is a cusp form of weight k, we may apply the above result to F(z) =
y*|f(2)|? which is easily checked to be T-invariant.

A straightforward computation shows that the constant term is

oo
yk Z |an|26—47rny'
n=1

The Mellin transform of the constatnt term is

* k+s = 2 _—Anny dy —s—k+1 - |an|2
| Yy Z|an| e 2 = (4m) F(s+k—1)zns+k_1.
n=1

n=1

This proves:

Theorem 2. Let f be a cusp form of weight k for SLo(Z). If

m .
f(Z) — Z an62mnz
n=1

is its Fourier expansion at infinity, then the Dirichlet series

h(s) = w2 FHITBD () (s + k — 1)((2s) f: ol

n=1

then 1(s) extends to function which is regular for all s € C except at s = 1 where it has a simple

pole and residue equal to
3/ k odzdy 3
- Yo f(z =—(f,f)
- O =0

Moreover, 1(s) satisfies the functional equation ¥ (s) = (1 — s).

If we apply the theorem of Chandrasekharan and Narasimhan [3] mentioned in the previous
lectures, we deduce that
" lanl? = 2(7, 1)a* + Ok )
n<lz
because twice the sum of the coefficients in the Gamma factors (or equivalently the degree in the
sense of Selberg) is equal to 4. By taking a single summand in the sum on the left, we deduce that
an = O(nk/2-1/%), The same technique applied to Maass forms gives us a,, = O(n®/19).
If we take f and g to be cusp forms (or even with one of them a cusp form), we consider

y* f(2)g(z)
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which is I'-invariant. If
o0
_ 2minz
f (Z) = Z ant
n=1
and

9]
g(z) — Z bn€27rinz
n=1

are the respective Fourier expansions at infinity, then the constant term is easily computed to be
equal to

00
yk 2 :anbne—lhrny_
n=1

One could also take forms of different weights k; and ky and consider

y B HR2 £ (2)9(z).

In the end, applying Theorem 1 we deduce that

00 _
anby
>

n=1

A suitably normalized version of this series (with appropriate I'-factors, ((2s) and so forth) extends
to a function which is regular everywhere except possibly at s = 1 where it may have a simple pole
with residue equal to

2(,9)

Thus, if f and g are orthogonal to each other, then the normalized series extends to an entire
function.
Kronecker’s limit formula states that

iny | Bz, 5) = 1| = tog(e”/m) — 21og(n(2))

s—1

where 7(z) = ¢/ [15°,(1—q"), with ¢ = €2™#. If f and g are Hecke eigenforms with 7¢, 7, being
the associated automorphic representations, the Kronecker limit formula allows us to write down
an exact formula for the special value L(1, 7 ® ).

4. RANKIN-SELBERG L-FUNCTIONS FOR G L,

The general theory for GL,, was initated and developed by Jacquet, Piatetski-Shapiro and Sha-
lika [5], Shahidi [9] and finally completed by Moeglin-Waldspurger [7]. If m; and 79 are cuspidal
automorphic representations of GL,, and GL,, of the adele ring over the rationals (say), then the
Rankin-Selberg L-function is defined by the Euler product

L(s,m ®@ mp) = H L(s,mp ® mop)
P

where for all but finitely many primes p, the Euler factors are given by the formula

O[(l)a(?) -t
L(Saﬂ-l,p &® 7T2,p) = H (1 _ %)
Y]
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and
)\ !

«
L(s,mp) = H A

. p®

I3
for r = 1,2. It is possible to define the Euler factors at all the places so that the final product
converges for R(s) > 1. The completed L-function turns out to be entire unless

To ~ m @ |det [

for some real number ¢ in which case the function is regular everywhere except at s = 1 — it where
it has a simple pole.
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