2. MAASS WAVE FORMS

1. MAASS FORMS OF WEIGHT ZERO

If we consider modular forms without the holomorphy condition but insist that our function is
an eigenfunction of the non-Euclidean Laplacian:

0? 0?
A= —+-—
ozr? = Oy?
we arrive at the notion of real analytic forms. We may write such a function, as a function of the
variables z,vy and since f(z + 1) = f(z), we have

f@,y) = an(f,y)e®™™.

Suppose that Af = \f. This gives us a condition on the coefficients a,(f,y), namely that they
satisfy
2

d
—y’—an(f,y) = (A — 4n*n’y?)an(f,y).
dy
One can renormalize and show that

f(x,y) = aO(f)ys + a6y1*s + Z an(f)\/:EKir(Zﬂlnly)eQ"im
n#0

Sy .
/ e Y cosh t—zrtdt

where

with A = 1/4 + 72,
Maass proved that the series

extends to a meromorphic function for all s € C analytic everywhere except possibly at s = 0 and
s = 1, and satisfies a functional equation.

We have the celebrated Ramanujan conjecture that for any € > 0, a,(f) = O(n¢). The Selberg
conjecture is that A\ > 1/4, or equivalently, r is real and not purely imaginary.

In his 1970 paper, Langlands [5] interprets the Selberg conjecture as a Ramanujan conjecture
“at infinity” and thus puts both conjectures on an equal conceptual footing.

By the work of Kim and Shahidi [4], we know that a, = O(n7/6%) and that A\ > .238 by the
recent work of Kim and Sarnak (3]
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2. MAASS FORMS WITH WEIGHT

Let us fix a discrete subgroup I' of SLs(R). Here we consider functions on the extended upper
half plane which satisfy the following: (i) f(vz) = ((cz + d)/|cz + d|)* f(2) for all

’yE(Ccl S>EF;

0? 0? 0
Ak; = —y2 (@ + 6—y2) + Zky%
(iii) a growth condition of the form f(z +iy) = O(y") for some N > 0 as y tends to infinity.

One can show the existence of “shift” operators that will reduce the study of these spaces
essentially to the study of weight zero or weight one Maass forms. Thus, often in the literature,
(see for example [1] ) the focus is on weight zero or the weight one case.

If f is a classical modular form of weight &, then it is not hard to show that y*/2f(z) is a Maass
form of weight k with eigenvalue k(2 — k)/4. Therefore, the study of Maass forms includes the
study of modular forms from this perspective.

The set of Maass forms of fixed weight forms a vector space over C. Moreover, we have an
involution acting on this space given by the map

v: f(z) = f(—2).

A form is called even if to f = f and odd if L o f = —f. Therefore, the space of Maass forms
decomposes as a direct sum of two subspaces consisting of even forms and odd forms respectively.

The L-series
i an(f )
nS

n=1

(ii) f is an eigenfunction of

extends to an entire function and satisfies a functional equation:

o () r ()t —wer (B (R pa - s )

where 6 = 0 or 1 according as f is even or odd.

For I' = SLy(Z), Selberg [7] proved that A > 1/4 and this was extended to congruence subgroups
of sufficiently small level by Vigneras[8]. For general arithmetic groups, Selberg showed that A >
3/16.

3. EISENSTEIN SERIES

The simplest example of a Maass form is given by the Eisenstein series

E(z,s) = WﬁSF(s)% Z Y

a0 M2 T
This series converges for R(s) > 1 and we clearly have
E(yz,s) = E(z,s)
for all v € SLy(Z). In addition, it is easily verified that
AE(z,s) = s(1 — s)E(z,s)

S



2. MAASS WAVE FORMS 3

so that E(z,s) is a weight zero Maass form with eigenvalue s(1 — s). Since E(z, s) is periodic with
period 1, we can derive its Fourier series:

o

E(Z,S) = Z ar(y’s)eZWir;c

T=—00

and .
a(y, s) :/ E(z + iy, s)e ™% dg.
0

We do the obvious. We insert the series expansion for E(z, s) into the integral and apply Fubini’s
theorem. First, the contribution to E(z,s) from m =0 is

7w °T'(s)y®C(2s).
This is part of ag(y, s) but not all of ay as we shall see below. Now suppose m # 0. Since (m,n)
and (—m, —n) give the same summand in E(z,s), we may suppose m > 0. Thus,

o0 o 1 4
arly,s) =7 T(s)y* > > / [(ma + )2 + m%y?) Se 2Tirady,
0

m=1n=—o0

If we mut n = gm + d with 0 < d < m, the sum becomes

o0 00 .
Z Z / [(mw—l—d)2 +m2y2]—se—2mrwd$.
o0

m=1dmodm * ~

We change variables: z = u — d/m to get

Z m—25/ u2 +y2)—se—27ri'ru ( Z eQﬂidr/m) du.

(
m=1 - dmodm

oo

The innermost sum is zero unless m|r in which case it is m. Thus, the sum becomes

> m125/

m|r T

w .
(u2 + y2)756727rzrudu

Ifr =0, we get

o0

rT(s)y*C(25 — 1) / (a2 +4?)~du

—00
which is equal to
75ml (s — 1/2)y' 75¢ (25 — 1).
Thus, the constant term (on applying the functional equation for ((s)) is equal to
ag(y,s) = 7T (s)¢(2s)y" + 7°7'T(1 — 5)¢(2 — 28)y' ~*.
If r # 0, then we get
ar(y,s) = 2|7"|S_1/201725(\T|)\/?7Ks—1/2(27f|7"|y)

o1-25(1) = Z m'=2s,

mlr

where

One can show that a,(y,s) = a,(y,1 — s) and r®o_o4(r) = r *094(r) from which the functional
equation is easily deduced.
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4. UPPER BOUND FOR FOURIER COEFFICIENTS AND EIGENVALUE ESTIMATES

We begin with the elementary observation
1 24400
e Mr = —/ ['(s)z’ds
27 2—1i00

which is easily demonstrated by contour integration and Stirling’s formula. Hence,

Zan n/T — 27rz/ [(s)f(s)x’ds

(2)

where
o0
= E an/n’.
n=1

Now suppose that a, > 0 and f(s) is absolutely convergent for R(s) > 1+ e. Moving the line of
integration to R(s) =1+ € gives

o0

Zane—n/x _ O(:L‘H—e).

n=1
Thus, for any individual term in the sum, we have

ane—n/w — O(ZE1+€).

Choosing = = n, we deduce that a,, = O(n!*c).
It may look as if we were wasteful in the above analysis and a finer argument would give a better
estimate. This, however, is not true as can be seen by considering

o k-1
n=1
In this example, we have
an = Qn'7)

for any € > 0 and so, we cannot reduce the exponent in the penultimate analysis.

Now consider
K ﬁp
L (s) := L(s,m, ) HH

where we are ignoring the finitely many Euler factors that need to be modified corresponding to
the ramified factors.
Consider the L-function

L(S,T{',’f‘m®fm) = H L(S,?T,’I"k)-
k<2m, k odd
The proof of this identity is equivalent to the trigonometric identity
sin30  sin56 sin(2m — 1)6 (sin m9)2
_|_ _|_ PR =

sin @ sin @ sin @

1+

sin @

which is easily proved by induction and left as an exercise for the reader.
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Thus, the series L(s, m, 7y, ® Tr,) is a Dirichlet series with non-negative coefficients. If we now
suppose that for each m > 1, L(s, 7, ry,) is analytic for R(s) > 1 + ¢, then its p-th coefficient (for p
prime) is O(p'*€) by the argument given above. But the p-th coefficient is easily calculated to be

2
m

> apip)

J=1

Moreover, oy, = 1 so that if the Ramanujan conjecture is false, one of these has absolute value
greater than 1. Without any loss of generality, suppose it is ,. Then, in the above summation,
a,' dominates the sum so we deduce

|0‘p|2m = O(PHe)-

Taking, 2m-th roots, we obtain

ap = O(p+9/2m),

and letting m tend to infinity, we obtain «, = O(1) which is the Ramanujan conjecture.

As we remarked above, this reasoning cannot be sharpened. However, using the fact that each
of the L-functions L(s,m,r,,) satisfies a functional equation, one can improve the estimate using
a classical result of Chandrasekharan and Narasimhan [2]. This result says that if a, > 0 and
f(s) =372, an/n’ is convergent in some half-plane, has analytic continuation for all s except for
a pole at s = 1 of order k£ and it satisfies a functional equation of the form

Q°A(s)f(s) =wQ A1 — 5)f(1 — s)
where () > 0 and
A(s) = H C(ais + Bi)

then
241 h1
Z ap = ¢Py_1(log z) + O(z24+1 log" " x)
n<lc

where A = ). ;. Taking differences, we deduce that
24-1 . g1
ap, = O(n24+1 log" ™" n).

In [6], this result is stated with a typo on page 525. (On lines 3 and 7 of [6], (24 — 1)(24 + 1)
should be (24 — 1)/(2A + 1) in both instances.)

A similar reasoning can be applied to obtain bounds in the Selberg eigenvalue conjecture. If «
corresponds to a Maass form with eigenvalue A, then the Gamma factors in the functional equation
of L(s,m, ) will have the following shape:

m
_ s—Aj YA N
D (s,m,m) —jl:[OF( 5 ), Aj=i(m—=25)r, A= 1 + re.

One can also study oscillations of Fourier coefficients of modular forms as well as Dirichlet series
constructed out of Kloosterman sums. This we will take up in later lectures.
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