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UBIQUITY OF PROBABILISTIC PHENOMENA

Certain basic statistical patterns and probabilistic structures arise in
empirical data and theoretical models from completely different fields.

The Workshop on Current and Emerging Research Opportunities in
Probability — 2002 identified the following areas

* Algorithms

» Statistical Physics

* Dynamical and physical systems
 Complex networks

 Mathematical finance, risk and dependency
» Perception in artificial systems

* Genetics and ecology



Outline
FIRST CIRCLE OF IDEAS:
Probability laws and universality classes
SECOND CIRCLE OF IDEAS:
Markovian dynamics and conditional independence.
THIRD CIRCLE OF IDEAS:
Probabilistic modelling of reversible interacting systems
FOURTH CIRCLE OF IDEAS:
Spatially distributed nonreversible stochastic dynamics
FIFTH CIRCLE OF IDEAS:
Hierarchy, Genealogy and History
SIXTH CIRCLE OF IDEAS:

Universality classes of spatial and space-time structures



Empirical discovery of probability laws

Example:Benford’s Law

e Simon Newcomb (1881) - tables of logarithms.
e Frank Benford (1938) - 20,229 data sets (molecular weights of

chemical compounds, population sizes, etc.
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Benford’s distribution of first digit

p =logio(l + 1/d)

where p = the probability that the first significant digit is d.

o Statistical derivation - T.P. Hill (1996)

— Introduced idea of Scale invariant and Base invariant

distributions



Discovery of the Central Limit Theorem

The Normal (Gaussian) Law
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Abraham De Moivre 1788 - aprozimation to Binomial - games of

chance

Johann Carl Friedrich Gauss 1809 - Law of Errors - astronomical
data

Adolphe Quetelet "1880 "the average man”

Francis Galton "1860 - biological data - inheritance



Surprising Places: Kac-Steinhaus Example

cos(A1t) + cos(Agt) + - - - + cos(Apt)

/n

{A;} are are linearly independent over the field
of rationals.

T, (t) 1=
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Ln(a,b) = lim / Tl(a,b;.(ﬂ:n(t))dt

1 b
lim L,(a,b) = — [ e zdz
n—00 /27T /ﬁ

Q. WHY does the Gauss (normal) law arise?



“Bven before the climazx of our search for the meaning of
independence was reached, it became abundantly clear why fout le
monde was justified in believing in the loi des erreurs. It proved io

be both un fait d’observation and une théoreme de mathématiques.”

- referring to his work with Steinhaus (1935-38)

Mark Kac - Enigmas of Chance



Basic Concepts
X1,.... Xx

zero mean independent identically distributed random variables.

Independence and the Characteristic Function

E(BiE'SN) _ E(Eiﬂ}(l L EiQXN) _ E(Eiﬁ'}(l) o E(EiHXN)

where Sy :=(X1+...XnN)

Scaling Limit



Properties of the Scaling Limit

l]:,t—l—s — lptlps

_ E(Bie(xt—xﬂ)eiﬂ(xtﬂ—xt))

P s = P Ps Convolution Semigroup

e Infinite Divisihility Khinchin-Levy Representation

e Functional Fixed Point Equation

1(0) = F(91)(0)
F(y1)(8) = vi(ah) for some o > 0.



Universality Classes
Fixed Points and their Domains of attraction

e The Gaussian Law - “Short Tails”
6%t
l];’t(g) — eXpP <—7> .

1 1=l .4
e 2t dx in R
v/ 2t
e The Stable Laws - “Long Tails”- “Noah Effect”

Pt(dl') —

W,(0) = exp(—t[0]%), 0<a<?



The Function Space Perspective - Brownian Motion

e Independent increments

Pxﬂ (Btl - dﬂ.’:lj SRR .‘,Bt“ = dﬂ:’n)

=p1, (T1 — Zo)pt,—t, (T2 — 1) - P, 1, (Tn — Tn1)
o Law of Brownian Motion = Wiener Measure (1923):

P., = measure on C([0,00)).

One dimensional Brownian Motion
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® Donsker’s Invariance Principle (1952)

1
Xn (t) = ESLRH

Xn(t) = B(t)
B(t) = Brownian motion
e Self-similarity
B(ct) = /eB(t)

e {t - B; Almost surely non-differentiable, positive

quadratic variation.



Brownian motion is an incredibly rich mathematical object and

serves as a key building block of stochastic analysis. Mark Yor:

"I was extremely astonished at the number of very natural questions

which have escaped attenition uniil very recently.”

One of the questions he raises is “To understand betier the ubiquity

of Brownian motion in a great number of probabilistic problems ”



=—> SECOND CIRCLE: Dynamics and Conditional

Independence

Markov property Conditional independence of past and

future

® Markov Semigroup - Brownian Motion

Tof(x) = Bo(f(By)) = / FW)Pi(z — y)dy
Tops = T,

u(t,x) =T, f(x)

ou(t,z) 1
= —Auf(t




The Impact of Ito Calculus

dF(B(t)) = F'(B(t))dt + %F”(B(t))dB(t)

Brownian Motion as building block: Stochastic Differential
Eqguations.

Geometric Brownian Motion:

(multiplicative random effects, multiplicative CLT)
dx(t) = px(t)dt + ox(t)dw(t)
z(t) = (=St tow(t)

e Black-Scholes formula for option pricing

e o = volatility, volatility modelling



Brownian Motion with Killing - Feynman Kac change of

probability measure

Ou 1
u(0)=f>0

T f(x)= F, {exp(— /{: V(;cs)ds)f(:r:t)}

Mutation-Selection, nonlinear Genetic algorithm:

1 t
110 = e | exo(= [ Vieasfie)
0
/ = mnormalizing constant
du 1

B §Au — Vu+ u/V(.?:)u(J:)d;c



Gradient motion in a potential V

ou o2

dx(t) = —VV(z(t))dt + odw(t) Ito SDE

Gibbs Distribution: lim;_,o T3 f(z) = £ [ f(z)exp(— =5V (z))dx

Example: Ornstein-Uhlenbeck

1
V(-T) = 57332

dz(t) = —~vyx(t)dt + odw(t)

mmmdp  Method of simulated annealing.



The Mystery of Dimension

® T'wo dimensional Brownian motion

e [.ow dimensions
e Intermediate dimensions

» High dimensions




Dynamics of Eigenvalues and Wigner’s Semicircle Law

Real symmetric n X n random matrices: M (t) - the upper triangle

entries are independent OU.
Eigenvalues A;(¢):

1 dt /1

iF]

Semicircle Law: Empirical distribution of eigenvalues converges to

.1 2 [ o L
lim =N, (\) == [ (1-u?)?du, |A<1

Universality: n X n real symmetric matrices with

E(&) = 1, i <3, E(£2) < const + subgaussian decay at infinity



From Solid State Physics to the Riemann Zeta Function 19 T |

(Gaussian unitary ensemble: ol i

Real and complex off-diagonal entries are independent

(Gaussian.

e "GUE-Hypothesis”: (Dyson—Montgomery)
the spacings of N successive zeros of the Riemann zeta
function and eigenvalues of ¥ x N Hermitian matrices

have the same statistical properties in the N — oo limit.

® Persi Diaconis: ”Statistical test of hypothesis” —
Andrew Odlyzko’s computation of the 10?°th zero of
the Riemann zeta function and 175 million of it

neighbours.

® Universality Rudnick and Sarnak: universality of the
behavior of correlations between successive zeros for a

class of L-functions.



Nearest neighbor spacing among 70 million zeros beyond the 10%°th zero
of the zeta function compared to the Gaussian Unitary Ensemble

1.0

density

3.0



=> THIRD CIRCLE:
Probabilistic Modelling of Interacting Systems

Gibbs Random Fields and Ising Model

Configurations on cube of side K, Cx in Z¢. E = {+1}°k,

Energy

Gibbs Distribution

3 = inverse temperature




Spitzer-Dobrushin

e Markov Random Field (conditional independence)

® Reversible equilibrium, detailed balance.

® Glauber Markovian dynamics: spin-flip

—)

Transition Probabilities
Depend on

Nearest Neighbours




From Statistical Physics to Statistics:
® Phase Transitions, Critical temperature.
® Critical fluctuations d < 4 vs. d > 4.

® Spin Glass Models, disordered medium: random J, ;,

frustration.

® Markov chain Monte Carlo in statistics and
optimization
— Find a Markov chain whose stationary distribution
coincides with the desired distribution
* the Gibbs sampler inspired by (Glauber dynamics
— MCMC has many important applications, for

example, in Bayesian networks - used e.g. in

machine learning.



—> FOURTH CIRCLE:

Spatially distributed stochastic dynamics -lattice system on Z*

e voter model

e branching random walk

e contact process

e stepping stone model

e random catalytic media

e multiagent systems

e internet dynamics

e spatial economies

e urban growth models.



e Interacting systems
{z:(t) ficze
— Migration between sites via random walk

— Stochastic dynamics with interaction

Critical Binary Branching RW

N(t)

Xt — Z 53&&)?
=1

1
Rate 1: 6, — 0, prob. 5

1
Rate 1: 6, — 6, + 6., prob. 5



Large scale viewpoint Space-time-mass rescaling

N(t/e)
Xi=¢ ) Oyemty

1=1
In one dimension X; =—> X;(x)dx where X;(x) is solution of
SPDE

dX;(zx) = %AXt(.?:) + +/ Xy ()W (dt, dx)

W (dt,dx) = “Space-time white noise”



Wright-Fisher SPDE

Space-time
Evolution

i II r.l._:"‘-lr”lll! ﬁ |

i M, vl H& i
S N it

! Wl %

J- i

dX,(x) = %AXt(;c) + /X (2)(1 — Xy(x))W(dt,dx)



Super Brownian Motion

Dimensions d > 2. X; — X;(dx) measure-valued process

Laplace Functional:

E(E_ f f(x)}{t(dx)) _ E—f u(t,x) Xg(dx)

Log-Laplace Equation

ou 1 5
u(0) = f

Integrated Super Excursion:

O
v Z:/ Xﬁdt, XU = 850
0



Super-Brownian Motion in

d=2
¢ <—— Mass

distribution

Occupied
region =~ °

X, = singular measure!



——> FIFTH CIRCLE: Hierarchy, Genealogy and History

Finite Population Sampling and Mutation -
Wright-Fisher

¢ Generation of new generation by finite population sampling

— Current population of size N with K alleles (types) with

frequencies pq, ..., Ppg

— next generation

P(na,...,nx) —

— eventual fixation of one type

e Creation of new tvpes by mutation



The Infinitely Many Alleles Model

— Types labelled by points in |0, 1]

— Finite population sampling

— Mutations occur at constant rate and give rise to new type

Large population limit X; is measure-valued diffusion process
with state space M;([0,1])

Then (Xequ([0, +)),- -, Xequ{[£5+,1])) has the Dirichlet
distribution

K £-1 £-1

P1 Py
flpr, ..., = I'(& ..
) T () ()

on the simplex {p; > 0,) p; = 1}.



Poisson-Dirichlet
— Order the types in non-increasing frequency

— Let K — o0.

— In the limit the vector ordered probabilities (p1,p2, ps3, ... ) has
the Poisson Dirichlet PD(8) distribution.



From Genetics to Number theory
Let N(n) be a randomly chosen integer from 1 to n.

Let 31(n), B2(n), B3(n), ... be the multiplicities of the prime

divisors p1,p2,... of N(n) in non-increasing order

Bi(n)logp;
ai(n) = log N(n)

{a1(n), aa(n), ...} =n— oo Poisson-Dirichlet(1)



The Kingman Coalescent, genealogy

Look at common ancestors of individuals in the population:

k
— Pure death process py = , k=mn,...,2

: ) |

Up to last common ancestor

Marks = mutations



Infinitely many sites model
State space M ([0, 1])Y.
0, 1] denotes the sites in a DNA string and

x = (x1,Z3,...,0,0,...) where x,x4,... denote the sites at

which mutations have occurred
— x4 is site of latest mutation,
— xo is site of second most recent mutation, ...

This is the “Historical” version of the infinitely many types
model and is used to get the distribution of the number of

pairwise comparisons and estimate mutation rate.

Most inference on genetic data involves combination of

probability models and computational tools such as MCMC.



Infinitely many types Stepping Stone Model
— Set of sites Z¢
— Set of types |0, 1]

— Population at each site: M7|0,1] = distribution of infinitely
many types

— Finite population sampling at each site - no mutation

— Migration via random walk on Z¢

Qualitative Behavior

— d = 1,2 Local population becomes unitype - loss of diversity

— d > 3 Global equilibrium develops with multiple types present
locally

— d= 3,4 - immortal families (colours) recurrent

— d > 5 - immortal families {colours) transient



Homozygosity in large space-time scales. Infinitely many
types stepping stone model in Z¢, d > 3 with Xy = v, v
nonatomic. Let A := {(z,z) € [0,1] x [0,1]}. Then

BmL oo (1/(L%) ) < Xeg(§) X Xeg(0),In >=0

P12

Moreover

/ < Xeg(7) X Xeg(0),Ia > dt < oo
0

if and only if d > 5.



Role of Dimension
— Dimensions d = 1,2. Random walk is recurrent.

— Dimensions d = 3,4 Random walk is transient but not strongly

transient.

— Dimensions d > 5 Random walk is strongly transient, that is,
E(LB) < OO

where [ g is the last exit time from a bounded set.



SIXTH CIRCLE: Universality in spatial and space-time
structures

e SBM

o ISE
e SLE



The Voter Model in d > 2

&i(x) € {0,1}, z € Z¢
Rate p(z — y) : &(x) — &(y)

Rescaled Voter Model on Z¢/+/N.

& (x) = Eni(zVN)

1
XtN - N Z ,5;\’(;.;)5I
x(—:z—i
VN
Assume X = X, € Mp(R?®) as N — co. Then X}V — X,

(SBM) (Cox, Durrett and Perkins, Bramson, Cox and Le Gall.)
(N'= N, d>3, N'= N/log N if d = 2)



Infinitely many types

Voter Model

T
AAEL ull;i;_:_ll-.=

o

?-_.

te time

Intermedi

Initial Configuration



kil N R
Multitype Voter Clusters wmmp SBM (paim cluster)




Critical Bond Percolation on Z¢

D — probability bond closed

Pe — critical probability for 3 infinite cluster




— High Dimensions. No infinite cluster when p = p_

— Conjecture (Hara and Slade): “Infinite incipient cluster”:
Cn(0) = Cluster of size N

In dimensions d > 6 as N — oc.

Xy = I =1ISFE

N—oo

o0
7= / X ds, conditioned to have total mass one
0

X, = SBM excursion from 0.

7 is supported on a random subset of dimension 4 in R®.

(Hara and Slade) In high dimensions two and three point

functions (moment measures) converge to those of ISE.



Lattice Trees d > &

Rescaled random tree Ty with N bonds.
(Aldous; Derbez, Slade)

Xy — 1

N—ooxo

(large d or d > & with spread-out trees).




Two dimensional phenomena.

— Scaling limit of critical site percolation on two dimensional
triangular lattice “boundary path” is equal to chordal SLEg.

(Lawler, Schramm, Smirnov and Werner)
— Conformal invariance.

Stochastic Loewner evolution equation

SLE(x): Let B(t) be one dimensional BM and

W(t) = B(kt)
B(0) =0
9 2

597 = gi(z) — W(t)

go{z) = 2, gi(z) is a curve in upper half plane



Universality Phenomena

* Why do these different interacting systems have a common
scaling limit?
* How we identify and classify the possible large space-time scale
behaviors?
. Other universality classes: Fisher-Wright, Fleming-Viot,
Mutually catalytic branching
- HMF analysis: fixed point of NL integral equation



FUTURE CHALLENGES

— Probabilistic modelling of complex systems arising across the

biological and social sciences.

— Integrative approach to the analysis of empirical data and
theoretical and simulation studies of mathematical models.

— Identification and classification of possible large space-time scale
behaviors?
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