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UBIQUITY OF PROBABILISTIC PHENOMENA

Certain basic statistical patterns and probabilistic structures arise in
empirical data and theoretical models from completely different fields.

The Workshop on Current and Emerging Research Opportunities in
Probability — 2002 identified the following areas

e Algorithms

e Statistical Physics

* Dynamical and physical systems

e Complex networks

 Mathematical finance, risk and dependency
» Perception in artificial systems

e Genetics and ecology



Outline
FIRST CIRCLE OF IDEAS:
Probability laws and universality classes
SECOND CIRCLE OF IDEAS:
Markoviah dynamics and conditional independence.
THIRD CIRCLE OF IDEAS:
Probabilistic modelling of reversible interacting systems
FOURTH CIRCLE OF IDEAS:
Spatially distributed nonreversible stochastic dynamics
FIFTH CIRCLE OF IDEAS:
Hierarchy, Genealogy and History
SIXTH CIRCLE OF IDEAS:

Universality classes of spatial and space-time structures



Empirical discovery of probability laws

Example:Benford’s Law

e Simon Newcomb (1881) - tables of logarithms.
e Frank Benford (1938) - 20,229 data sets (molecular weights of

chemical compounds, population sizes, etc.
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Benford’s distribution of first digit

p=log1o{1 + 1/d)

where p = the probability that the first significant digit is d.

e Statistical derivation - T.P. Hill (1996)

— Introduced idea of Scale invariant and Base invariant

distributions



Discovery of the Central Limit Theorem

The Normal (Gaussian) Law
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Abraham De Moivre 1788 - aproximation to Binomial - games of

chance

Johann Carl Friedrich Gauss 1809 - Law of Errors - astronomical
data

Adolphe Quetelet "1830 "the average man”

Francis Galton “1860 - biological data - inheritance



Surprising Places: Kac-Steinhaus Example
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Q. WHY does the Gauss (normal) law arise?



“Fven before the climaz of our search for the meaning of
independence was reached, it became abundantly clear why fout le
monde was justified in believing in the loi des erreurs. It proved io

be both un fait d’observaition and une théoreme de mathématiques.”

- referring to his work with Steinhaus (1935-38)

Mark Kac - Enigmas of Chance



Basic Concepts
X1,.... Xn

zero mean independent identically distributed random variables.

Independence and the Characteristic Function

E(EiHSN) _ E(Eiﬁ'}{l o Eiﬂ}{m) _ E(Eiﬁ}{l) o E(EiHXN)

where Sy = (X7 + ... XnN)

Scaling Limit



Properties of the Scaling Limit

lpt—l—s — lpt l];’s
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P s = P P Convolution Semigroup

e Infinite Divisibility Khinchin-Levy Representation

e Functional Fixed Point Equation

1(0) = F(1)(6)
F(yn)(8) = ¢¥i(ah) for some o > 0.



Universality Classes
Fixed Points and their Domains of attraction

e The Gaussian Law - “Short Tails”
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e The Stable Laws - “Long Tails”- “Noah Effect”
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The Function Space Perspective - Brownian Motion

e Independent increments

P_ (Btl - d.i'.’:h 00 C ,Bfﬂ [~ dﬂ:n)

O

= P (T1 — Zo)Pt,— 1, (T2 — T1) - Pey—t (T — Tn1)
e Law of Brownian Motion = Wiener Measure (1923):

P., = measure on C([0,00)).

One dimensional Brownian Motion
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® Donsker’s Invariance Principle (1952)

1
X, (t) := —RSLan

f
Xn(t) = B(t)
B(t) = Brownian motion

® Self-similarity
Blct) = +/cB(t)

e t - B, Almost surely non-differentiable, positive

guadratic variation.



Brownian motion is an incredibly rich mathematical object and

serves as a key building block of stochastic analysis. Mark Yor:

"I was extremely astonished at the number of very natural questions

which have escaped atteniion unitil very recenily.”

One of the questions he raises is “To understand betier the ubiquity

of Brownian motion in a great number of probabilistic problems ”



—> SECOND CIRCLE: Dynamics and Conditional

Independence

Markov property Conditional independence of past and

future

e Markov Semigroup - Brownian Motion

T, f(z) = Eo(f(B)) = / FW)Pi(z — y)dy
I =G

u(t,x) =T f(x)
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The Impact of Ito Calculus

dF(B(t)) = F'(B(t))dt + %F”(B(t))dB(t)

Brownian Motion as building block: Stochastic Differential
Equations.

Geometric Brownian Motion:

(multiplicative random effects, multiplicative CLT)
dx(t) = px(t)dt + ox(t)dw(t)

() = elv—FtHowd)

e Black-Scholes formula for option pricing

e o = volatility, volatility modelling



Brownian Motion with Killing - Feynman Kac change of

probability measure

Ju 1
w(0) = f >0

T, f(x) = E, {e:{p(— /: V(xs)ds)f(;r:t)}

Mutation-Selection, nonlinear Genetic algorithm:

1 t
Tif(x) = EEI {exp(—/ V(:I:S)ds)f(:rt)}
0
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B = §Au — Vu + u/V(m)u(a:)d:c



Gradient motion in a potential V

Ou o2

dx(t) = —VV(x(t))dt + odw(t) Tto SDE

Gibbs Distribution: lim;_,eo T3 f(z) = £ [ f(z)exp(— 25V (z))dzx

Example: Ornstein-Uhlenbeck

1
Viz) = 5*}/:1:2

dz(t) = —vyz(t)dt + odw(t)

mmmdp  Method of simulated annealing.



The Mystery of Dimension

® Two dimensional Brownian motion

e .ow dimensions
e Intermediate dimensions

e High dimensions




Dynamics of Eigenvalues and Wigner’s Semicircle Law

Real symmetric n X n random matrices: M (t) - the upper triangle
entries are independent OU.

Eigenvalues A;(¢):

1 dt /1
dr; = EZAj_Ai—Aj di+ 4/ —dw;

-
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Semicircle Law: Empirical distribution of eigenvalues converges to

.1 2 [ o L
lim N, (\) == [ (1—u?)?du, [A<1

Universality: n X n real symmetric matrices with

E(&) = 1, 1< j, E(£2) < const + subgaussian decay at infinity
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From Solid State Physics to the Riemann Zeta Function
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Real and complex off-diagonal entries are independent

(Gaussian.

e "GUE-Hypothesis”: (Dyson - Montgomery)
the spacings of N successive zeros of the Riemann zeta
function and eigenvalues of ¥ x N Hermitian matrices

have the same statistical properties in the N — oo limit.

® Persi Diaconis: ”Statistical test of hypothesis” —
Andrew Odlyzko’s computation of the 10*°th zero of
the Riemann zeta function and 175 million of it

neighbours.

® Universality Rudnick and Sarnak: universality of the
behavior of correlations between successive zeros for a

class of L-functions.



Nearest neighbor spacing among 70 million zeros beyond the 10?°th zero
of the zeta function compared to the Gaussian Unitary Ensemble
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=> THIRD CIRCLE:
Probabilistic Modelling of Interacting Systems

Gibbs Random Flields and Ising Model

Configurations on cube of side K, Cx in Z¢. E = {£1}°%.

Energy

(zibbs Distribution

3 = inverse temperature




Spitzer-Dobrushin

® Markov Random Field (conditional independence)

® Reversible equilibrium, detailed balance.

® Glauber Markovian dynamics: spin-flip

—)

Transition Probabilities

Depend on
Nearest Neighbours




From Statistical Physics to Statistics:
® Phase Transitions, Critical temperature.
® Critical fluctuations d < 4 vs. d > 4.

® Spin Glass Models, disordered medium: random J, ;,

frustration.

® Markov chain Monte Carlo in statistics and
optimization
— Find a Markov chain whose stationary distribution
coincides with the desired distribution
* the (GGibbs sampler inspired by (Glauber dynamics
— MCMC has many important applications, for

example, in Bayesian networks - used e.g. in

machine learning.



