NAGOYA UNIVERSITY

Fast Spherical Harmonic Transform of FLTSS and its evaluation

Reiji SUDA Nagoya University

Fast Legendre Transform - Contents

- FLTSS
 - Implementation and its performance
- Applications
 - Shallow-water equations
 - Turbulent flow

FLTSS

- FLTSS --- Fast Legendre Transform with Stable Sampling
 - Fast Legendre transform algorithm based on the FMM (Fast Multipole Method)
 - Approximate transform
 - Complexity O(T² log T log(1/ε))
 - Numerically stable
 - Error control in weighted 2-norm (damping)

The idea of fast transform (1)

Legendre functions can be interpolated as polynomials

$$P_n^m(y_j) = P_m^m(y_j)\omega(y_j) \underbrace{\sum_i \frac{1}{y_j - x_i}} \frac{P_n^m(x_i)}{P_m^m(x_i)\omega_i(x_i)}$$

$$\omega(y) = \prod_i y - x_j$$
FMM computes the summation in *linear time approximately*

The idea of fast transform (2)

Evaluation of an *N*-term transform on *K* points

O(KN) by direct computation

The idea of fast transform (2)

N-term evaluation on *N* points

 $O(N^2)$ in direct computation

Interpolation from N points on K points

O(K)

The idea of fast transform (2)

N/2-term evaluation on N/2 points

N/2-term evaluation on N/2 points

N/2 points onto *N* points

N/2 points onto *N* points

Addition of two vectors of size N

Interpolation from N points on K points

O(N)

O(N)

O(K)

The idea of fast transform (2) $O(K + N \log N)$

N/4 terms N/4 points N/4 to N/2 N/4 to N/2	N/4 terms N/4 points N/4 to N/2 N/4 to N/2	$O(\log N)$ levels $O(N)$
Addition size N/2	Addition size <i>N</i> /2	O(N)
N/2 points onto N points	N/2 points onto N points	O(N)
Addition of two	O(N)	
Interpolation from I	O(K)	

Speedup rates in flop counts

T	$\varepsilon = 10^{-6}$		$\varepsilon = 10^{-10}$	
	error	speedup	error	speedup
127	1.00e-6	1.456	1.05e-10	1.281
170	1.16e-6	1.597	1.13e-10	1.376
255	1.24e-6	1.825	1.32e-10	1.536
511	1.52e-6	2.281	1.37e-10	1.903
1365	2.02e-6	3.983	2.24e-10	2.720
4095	2.62e-6	9.114	2.85e-10	5.415

Implementation of FLTSS

- Transform code written in fortran90
 - Preprocessing code in C
 - Complexity O(T³ log T) or O(T⁴)
 - Error control and stability optimization
 - Preprocessed data stored in disk
- Evaluation and expansion routines
 - Legendre functions and differentiated ones
 - real and complex

First implementation (ver0.10)

- Straightforward implementation of the evaluation algorithm for real
 - Using recursive feature of fortran90
- Timing results --- miserable!

T170	T170 original	fast		
1170		ε=10-6	ε=10 ⁻¹⁰	
time	39.26	63.50	48.26	

chammp case-1 12hours: alpha 21264 666MHz

Improved implementation (ver0.20)

- Unfold all computations
 - Flat structure of multiply-and-add's ... similar to sparse matrix-vector product
- Timing results
 - Much better, but yet not satisfactory

T=170	original	fast		
		e=10 ⁻⁶	e=10 ⁻¹⁰	
time	39.26	31.58	33.37	

chammp case-1 12hours: alpha 21264 666MHz

Performance improvements?

- On RISC/vector processors
 - Unrolling the outer loop
 - Multiple-vector transform
 - High perf in single-vector transform hopeless?
- On parallel processors
 - ☑ Trivial parallelism in m-dimension
 - Load balancing is not trivial
 - Further parallelization of finer grain?

NAGOYA UNIVERSITY

Application of FLTSS

Applications of FLTSS

- Replacing Legendre transforms in existing codes: T170, $\epsilon = 10^{-10}/10^{-6}$
- Shallow-water test sets on a sphere
 - chammp (stswm)
 - Test cases 1, 3 and 6
- Turbulent flow on a sphere
 - Developed by Yoden and Ishioka

Case 1: error and difference

 $\alpha = \pi / 2$

Height 12 days: max 1000m Diff 10⁻¹⁰: max 10⁻⁶ m

Error: max 5m

Diff 10⁻⁶: max 10⁻² m

Difference from the original code is spread over the sphere

Case 1: error and difference

Height: max 1000m

Error: max 5m

Diff 10⁻¹⁰: max 10⁻⁵ m

Diff 10⁻⁶: max 0.5 m

Difference larger and localized about the poles

Case 1: devlp of difference

Abrupt increase at days 3 and 9

Linear but 10 times larger

Case 1: effects of time step

Difference is proportional to the *number* of transforms

Case 3: error and difference

$$\alpha = \pi / 3$$

Height: max 3000m

Error org: max 10⁻⁷ m

Diff 10⁻¹⁰: max 10⁻⁵ m

Diff 10⁻⁶: max 0.1 m

Difference larger than original error

Case 3: height errors ≈ differences

Nearly linear increase with time

Case 3: expansion coefficients

the maximum magnitude of the expansion coefs

Rapid decrease; the round-off level at n = 100Filled by errors of approx error level for each m

Case 3: expansion coefficients

the maximum magnitude of the expansion coefs

Filled by errors of the same level after long time integration

Case 6: result and difference

Height 14days: max 6000 m

Diff 10⁻¹⁰: max 10⁻³ m

Diff 10⁻⁶: max 16 m

Case 6: devlp of difference

Case 6: conservation analysis

t=14days	org	10-10	10-6	
mass	0.0	-1.05e-10	-3.61e-7	
energy	-1.19e-4	-1.19e-4	-6.43e-5	
enstrophy	5.52e-13	5.52e-13	5.52e-13	
divergence	6.03e-20	8.00e-18	-6.65e-13	
vorticity	1.03e-22	2.74e-22	1.67e-22	
height	1.81e-2	1.81e-2	1.86e-2	

Turbulent flow: the equations

Incompressible flow in vorticity eq

$$\frac{\partial \omega}{\partial t} = -\frac{1}{\sin \theta} \frac{\partial \psi}{\partial \lambda} \frac{\partial \omega}{\partial \theta} + \frac{1}{\sin \theta} \frac{\partial \omega}{\partial \lambda} \frac{\partial \psi}{\partial \theta} - 2\Omega \frac{\partial \psi}{\partial \lambda}$$
$$\omega = \nabla^2 \psi$$

- Hyperviscocity $-\nu\nabla^8\omega$ with $\nu=10^{-38}$
- Parameters $\Omega = 50$ (earth), t = 1 (a week)

Turbulent flow: expansion coefs

Random field at t = 0

Very slow decrease: 10^{-2} at n = 170

Turbulent flow: vorticity field

t = 0: max = 90

t = 0.9: max = 105

Diff 10^{-10} : max = 4e-6

Diff 10^{-6} : max = 4e-2

Turbulent flow: devlp of difference

Turbulent flow: conservation

t = 0.95	org	10-10	10-6
energy	1.46e-6	1.46e-6	1.78e-6
enstrophy	1.98e-4	1.98e-4	1.98e-4

Approximation effects less than the hyperviscosity

Summary at this point

- The effects of the approximation error is easy to understand (in most cases)
- Easy to user, hard to develop
 - Behavior is easy to understand
 - Many things to do for higher performance

NAGOYA UNIVERSITY

damping (weighted error control)

Case 1: expansion coefficients

the maximum magnitude of the expansion coefs

Damping: weighted error control

Transform (evaluation)

$$g_m(\mu) = \sum g_n^m P_n^m(\mu)$$

with approximation

$$\left| \widetilde{g}_{m}(\mu) - g_{m}(\mu) \right| \leq \sum \left| g_{n}^{m} \right| \widetilde{P}_{n}^{m}(\mu) - P_{n}^{m}(\mu)$$
smaller coefficient larger approximation error

Damping and scaling

Speedup of scaled damping

Speedup against direct computation of Legendre transform

	170	341	682	1365
E10D0	1.316	1.565	1.878	2.278
E11+3D1	1.319	1.578	1.904	2.358
E11D2	1.314	1.577	1.907	2.409

Speedup with scaled damping --- only in larger transforms

Case 1: damping effects on diff

Scaling cancels the increase of the error of the damping

Case 3: height errors with damping

Scaling effects much; because of the rapid decrease of coef?

Case 3: expansion coefficients

Rapid decrease; the round-off level at n = 100Filled by errors of approx error level for each m

Case 6: difference with damping

damping effects less ... from rapid decrease of coef?

Case 6: expansion coefficients

damping effects less ... from rapid decrease of coef?

Turbulent flow: expansion coefs

Random field at t = 0

Very slow decrease: 10^{-2} at n = 170

Turbulent flow: devlp difference

Regular increase by damping with exceptional E10D1(?)

Summary

- Easy to use, hard to develop
 - Behavior is easy to understand
 - Many things to do for higher performance
- Damping seems to work
 - Needs more research to predict the effects