New idealized test cases for dynamical cores

Christiane Jablonowski (cjablono@umich.edu)
University of Michigan

PDEs on the Sphere Workshop, Toronto 8/12/2002

Overview

- Introduction of the test suite basic ideas
- Initial data set
- Characteristics of the initial conditions
- Test strategy
- Results of the model intercomparison (4 models)
 - Balanced initial state
 - Baroclinic wave test
- Wrap-up

Basic idea & Design goals

- Goal: development of a new dynamical core test (without physics, dry & prescribed orography) that
 - is easy to apply
 - is idealized but as realistic as possible
 - gives quick results
 - starts from an analytic initial state, suitable for all grids
 - triggers the evolution of a baroclinic wave
- Designed for primitive equation models with pressure-based vertical coordinates (hybrid, sigma or pure pressure coordinate)

Derivation of the test case

- Initial data required: u, v, T, p_s, ϕ_s
- Find a steady-state, balanced solution of the PE equations:
 prescribe the wind speeds u & v and surface pressure p_s
- Plug prescribed variables into PE equations and derive the
 - Geopotential field: based on the momentum equation for v (integrate), calculate surface geopotential

$$\frac{dy}{dt} + \frac{(u^2 \tan(\varphi))}{a} = -\frac{1}{a} \left(\frac{\partial \varphi}{\partial \varphi} + RT \frac{\partial \ln(p)}{\partial \varphi} \right) - fu$$

- Temperature field: based on the hydrostatic equation

$$\frac{(\partial \phi)}{(\partial \varphi)} = -R \frac{T}{p} \frac{(\partial p)}{(\partial \eta)}$$

The initial data set

$$v = 0 \text{ m/s}$$

 $p_s = 1000 \text{ hPa}$

Initial temperature profile

Characteristics of the initial conditions

Instability mechanisms:

- Baroclinic instability vertical wind shear
- Barotropic instability horizontal wind shear

But:

- Statically stable
- Inertially stable
- Symmetrically stable

Characteristics of the initial conditions (IC)

• Static stability

Characteristics of the IC: Stability properties

• Inertial stability

• Symmetric stability

Test strategy

Step 1

- Initialize the dynamical core with the analytic initial conditions (balanced & steady state)
- Let the model run over 30 days (if possible without diffusion)
- Does the model stay stable?

Step 2

- Perturb the initial conditions with small, but well-resolved Gaussian hill perturbation
- 30-day simulation: Evolution of a baroclinic wave

Model intercomparison

• NCAR CAM2 framework:

- Eulerian dynamical core (Eul), spectral
- Semi-Lagrangian (SLD), spectral
- Finite Volume (FV) dynamical core (NASA/GSFC)

• GME:

- Icosahedral model of the German Weather Service (DWD)
- **Resolutions:** T170, T85, T42, T21 with 26 hybrid levels

Balanced initial state: Convergence study

Initial state is the true solution:

Balanced initial state: Intercomparisons

Balanced initial state: Problem areas

Zonal-mean zonal wind u decreases over time in an old version of the SLD dynamical core

(here at jet level 250hPa with different version of the test)

Balanced initial state: Special effects

GME shows a truncation error with wavenumber 5 structure

Baroclinic wave test

Strong temperature fronts, low and high pressure systems in the NH

Eul T42L26: Surface pressure and temperature at day 9

Baroclinic wave - Convergence & Uncertainty

Eulerian at different resolutions:

All models at highest resolution:

Baroclinic wave: Convergence

All models at highest resolution:

Baroclinic wave: p_s grid point data

Baroclinic wave: p_s difference plot

Baroclinic wave: KE spectra

Baroclinic wave: zonal-mean zonal wind

Wrap-up

- The steady state test can detect problems in the dynamical cores
- Baroclinic wave test:
 - convergence with resolution
 - 3 out of 4 models agree on the solution for 10 days
 - after 10 days we encounter predictability issues
 - Minimum resolution required: approx. T42
- Powerful test suite, easy to apply

Future application: Ideal test for Adaptive Grid GCMs

