Toronto Talk is Thirty Minutes in Duration, 2:00 to 2:30 on Tuesday, August 13, 2002

John P. Boyd*

Department of Atmospheric, Oceanic and Space Science and Laboratory for Scientific Computation, University of Michigan, 2455 Hayward Avenue, Ann Arbor MI 48109
jpboyd@engin.umich.edu;
http://www.engin.umich.edu:/~ jpboyd/
September 27, 2002

A Comparison of the Rate of Convergence, Efficiency and Condition Number of Chebyshev and Legendre Polynomial Series with Prolate Spheroidal, Kosloff/Tal-Ezer and Theta-Mapped Fourier Basis Sets

John P. Boyd
University of Michigan

August, 2002

Pseudospectral Methods: Good \& Bad

Good:

- Geometric Converge: $E(N) \propto \exp (-q N)$ ["Infinite Order", "Exponential", "Spectral"]
- With domain decomposition, ("spectral elements"), parallelizes well

Bad:

- "Stiffness": CFL limit is $O\left(1 / N^{2}\right)$ vs. $O(1 / N)$ for equispaced finite difference.
- Highly Non-Uniform Resolution:

Linear-Density-in-Interior,
Quadratic-Density-in-Boundary Layers

- Highly Non-Uniform Grid in each element.

THEMES:

- All five spectral basis sets here are
cosines-with-change-of-coordinate

$$
u(f[t])=\sum_{j=1}^{\infty} a_{j} \cos (j t[x])
$$

only the mapping $t(x)$ is different.

- Non-Chebyshev mappings can improve grid uniformity which implies Much longer stable timestep

$$
O(\sqrt{N})
$$

Better accuracy [asymptotically $(\pi / 2)$ per dimension]

- Multiple non-Chebyshev choices:

Kosloff/Tal-Ezer basis, prolate spheroidal, theta-mapped cosines [NEW]

Mapped-Cosine Basis Functions

Ancient identity:

$$
\begin{equation*}
T_{n}(x) \equiv \cos (n t[x]), \quad t(x) \equiv \arccos (x) \tag{1}
\end{equation*}
$$

Legendre polynomials are mapped cosines too:

$$
\begin{align*}
& P_{n}(x) \sim\{\operatorname{sign}(x)\}^{n} \frac{\sqrt{\arccos (|x|)}}{\left(1-x^{2}\right)^{1 / 4}} \\
& \times J_{0}\left(\left[n+\frac{1}{2}\right] \arccos (|x|)\right) \\
&+O\left(\frac{0.062}{n^{3 / 2}}\right) \tag{2}
\end{align*}
$$

Except near $x= \pm 1$, this simplifies to

$$
\begin{aligned}
P_{n}(x) \sim & \frac{\{\operatorname{sign}(x)\}^{n}}{\left(1-x^{2}\right)^{-1 / 4}} \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n+1 / 2}} \\
& \times \cos \left(\left[n+\frac{1}{2}\right] \arccos (|x|)-\frac{\pi}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Query: Is the Mapping } t=\arccos (x) \\
& \text { Optimum? }
\end{aligned}
$$

Three Mapped-Cosine Species That are Better Than Chebyshev/Legendre:

1. Kosloff/Tal-Ezer Basis
2. Prolate Spheroidal Functions
3. Theta-Mapped Cosines

Advantages

- Nearly-Uniform Grid Improves Resolution by $\pi / 2 \approx 1.57$ per dimension
- Timestep Lengthened by Order-of-Magnitude

Limits on Mapped Cosine Functions Theorem 1 (Mapping Constraints) Let

$$
\begin{equation*}
u(f[t])=\sum_{j=1}^{\infty} a_{j} \cos (j t[x]) \tag{3}
\end{equation*}
$$

Infinite order convergence requires

1. All odd derivatives of $f(\tau)$ are zero at both $\tau=0$ and $\tau=\pi$
2. $f(\tau)$ is symmetric with respect to both $\tau=$ 0 and $\tau=\pi$
3. $f(\tau)$ is periodic with period 2π.
4. The inverse function, $\tau=f^{-1}(x)$, has branch points at $x= \pm 1$; if $d^{2} f / d \tau^{2} \neq 0$ at $\tau=$ $0, \pi$, then the branch points are square roots.

Implications:

1. Grid cannot be completely uniform.
2. $d t / d x$ must rise to vertical at $x= \pm \pi$.

Quasi-uniform, better-than-Chebyshev grid IS POSSIBLE

Resolution of Mapped Cosines

- Evenly-spaced t-grid \Rightarrow non-uniform x-grid.
- Larger $d t / d x \Rightarrow$ smaller δx
- Higher minimum resolution (by $\pi / 2$) than Chebyshev.
- dt/dx for different bases

Figure 1: The slopes, $d \tau / d x$, for six different basis sets.

Kosloff/Tal-Ezer Basis

$$
\begin{gather*}
\phi_{n}^{K T}(x ; \beta) \equiv \cos \left(n t^{K T}(x)\right) \\
t^{K T}=\arccos \left\{\frac{\sin \arcsin (1-\beta) x}{1-\beta}\right\} \tag{4}
\end{gather*}
$$

$$
\forall|x|<1-O(\sqrt{\beta}),
$$

$$
\beta \ll 1
$$

$$
\text { i. e., maximum gridpoint separation }(\pi / 2) \text { smaller }
$$ than Chebyshev

Table 1: Theory and Applications of Kosloff/Tal-Ezer Mapping

References	Comments
Kosloff\&Tal-Ezer (1993)	Introduction and numerical experiments
Tal-Ezer(1994)	Theory; optimization of map parameter
Carcione(1994a)	Compares standard Chebyshev grid with Kosloff/Tal-Ezer grid
Renaut\&Frohlich(1996)	2D wave equations, one-way wave equation at boundary
Carcione(1996)	wave problems
Godon(1997b)	Chebyshev-Fourier polar coordinate model, stellar accretion disk
Renaut(1997)	Wave equations with absorbing boundaries
Don\&Solomonoff(1997)	Accuracy enhancement and timestep improvement, especially for higher derivatives
Renaut\&Su(1997)	3rd order PDE; mapping was not as efficient as standard grid for $N<16$
Don\&Gottlieb(1998)	Shock waves, reactive flow
Mead\&Renaut(1999)	Analysis of Runge-Kutta time-integration
Hesthaven, Dinesen	Diffractive optical elements; chose $\beta=1-$ cos $1 / 2)$
\& Lynov(1999) double timestep versus standard grid	

Kosloff/Tal-Ezer Basis: Virtues \& Vices

Virtues

If $\beta \sim$ constant $/ N^{2}$:

1. Nearly-uniform grid; $\pi / 2$ better than Chebyshev/Legendre
2. CFL limit $O(1 / N)$, same as finite difference.

Vices

1. Mapping is singular;
branch point moves to $x \in[-1,1]$ as $\beta \rightarrow 0$
2. $\beta \sim O\left(1 / N^{2}\right)$ destroys spectral accuracy

Kosloff/Tal-Ezer: Error in Series of $u(x) \equiv x$

- Geometric convergence is saved only if β is indpendent of N (bottom curve)
- CFL limit is still $O\left(1 / N^{2}\right)$, but may gain a factor of two.

Figure 2: The error in the approximation of the linear function, $u(x) \equiv x$, by a Fourier cosine series using the Kosloff/Tal-Ezer mapping. When $\beta=0.1224$, the choice of Hesthaven, Dinesen and Lynov(1999), the timestep limit is increased only by a factor of two, but the approximation still converges geometricaly. When $\beta=1 / N$, the timestep limit for a first order hyperbolic problem shrinks only as $O\left(1 / N^{3 / 2}\right)$ versus the more severe Chebyshev/Legendre/Hesthaven et al. limit of $O\left(1 / N^{2}\right)$. However, the usual rate of geometric convergence with N has been slowed to a subgeometric rate (upper curve) with an error falling as $\exp \left(-\right.$ constant $\left.N^{1 / 2}\right)$.

Prolate Spheroidal Functions of Zeroth Order
"Prolate Spheroidal Wave Functions are likely to be a better tool for the design of spectral and pseudo-spectral techniques than the orthogonal polynomials and related functions" - Xiao, Rokhlin \& Yarvin(2001), pg. 837.

- Defined as solutions $\psi_{n}(x, c)$ of

$$
\left(1-x^{2}\right) \psi_{x x}-2 x \psi_{x}+\left\{\chi-c^{2} x^{2}\right\} \psi=0
$$

n is the mode number, χ_{n} is eigenvalue and c is a constant,the "bandwidth" parameter.

- $\psi_{n}(x ; c=0)=P_{n}(x)$
- Complete asymptotic expansions are messy
- Relevant asymptotic expansion is simple.

Prolate Spheroidal Functions

"Transition bandwidth parameter"

$$
c_{*}(n) \equiv \frac{\pi}{2}(n+1 / 2)
$$

Prolate functions span $x \in[-1,1]$ only if
$c \leq c_{*}(n)$

Spheroidal: mode number=20

Figure 3: $\psi_{20}(x ; c)$ in the $x-c$ plane.

Prolate Spheroidal Asymptotics

$$
\begin{aligned}
& \begin{aligned}
\psi_{n}(x ; c) \sim & \frac{\sqrt{\mathcal{E}(x ; m)}}{\left(1-x^{2}\right)^{1 / 4}\left(1-m x^{2}\right)^{1 / 4}} \\
& \quad \times J_{0}\left(\frac{c}{\sqrt{m}} \mathcal{E}(x ; m)\right)
\end{aligned} \\
& \begin{array}{r}
\mathcal{E}(x ; m) \equiv \int_{x}^{1} d t \frac{\sqrt{1-m t^{2}}}{\sqrt{1-t^{2}}} ; \quad m \equiv c^{2} / \chi_{n}
\end{array} \\
& \text { When }|x|<1-O(1 / \sqrt{c}),
\end{aligned} \begin{array}{r}
\begin{array}{r}
\psi_{n}(x ; c) \sim \sqrt{\frac{2}{\pi}} \frac{m^{1 / 4}}{\sqrt{\chi_{n}}} \frac{1}{\left(1-x^{2}\right)^{1 / 4}\left(1-m x^{2}\right)^{1 / 4}} \\
\\
\quad \times \cos \left(\frac{c}{\sqrt{m}} \mathcal{E}-\pi / 4\right)
\end{array}
\end{array}
$$

If $c=c_{*}(n)$, then

$$
\begin{aligned}
\psi_{n}\left(x ; c=c_{*}(n)\right) \sim & \sqrt{\frac{2}{\pi}} \frac{1}{c} \frac{1}{\left(1-x^{2}\right)^{1 / 2}} \\
& \times \cos \left(\frac{\pi}{2} n(1-x)\right)
\end{aligned}
$$

Prolate Spheroidal Basis: Virtues \& Vices

Virtues

1. Nearly-uniform grid; $\pi / 2$ better than Chebyshev/Legendre
2. CFL limit $O\left(1 / N^{3 / 2}\right)$
3. Orthogonal with unit weight, like Legendre Vices
4. Complicated to precompute function values \& grid points

Symmetric tridiagonal Legendre-Galerkin
Newton-Ralphson iteration for grid
2. Poorly-developed theory

Theta-Mapped Cosines

$$
\begin{gather*}
\phi_{n}^{\theta}(x ; \sigma) \equiv \cos \left(n t^{\theta}(x)\right) \\
t^{\theta}=\Xi^{-1}(x ; \sigma) \tag{6}\\
\Xi(t ; \sigma) \equiv \sum_{m=-\infty}^{\infty}(-1)^{m} V(t-\pi m) \\
/ \sum_{m=-\infty}^{\infty}(-1)^{m} V(\pi m)
\end{gather*}
$$

where

$$
\begin{equation*}
V=\frac{\pi}{2} t \operatorname{erf}(\sigma t)+\frac{\sqrt{\pi}}{2 \sigma} \exp \left(-\sigma^{2} t^{2}\right) \tag{7}
\end{equation*}
$$

$\bullet \Xi$ is Rd integral of Jacobian θ-function.

- $\Xi(t, 0) \equiv \cos (t)$; basis $\Rightarrow T_{n}(x)$
- Unlike Kosloff/Tal-Ezer basis,
θ-map is free of singularities

$$
\begin{aligned}
& \frac{d t^{\theta}}{d x} \approx-\frac{\pi}{2} \quad \forall|x|<1-O(1 / \sigma), \quad \sigma \gg 1 \\
& \text { i. e., maximum grid point separation }(\pi / 2) \\
& \text { smaller than Chebyshev }
\end{aligned}
$$

Figure 4: Illustrated over three periods to explicitly show the periodicity of the map.

Theta-Mapped Cosines

Minor disadvantage:
 lack of explicit inverse $t(x)$
 Easy to compute numerically by bisection

Table 2: Inverse of Theta-Map: $t(x)$

```
function t=finverse_thetamap(x,sigma);
    itermax=50; epsilon = 1.E-12; t1=0; t2=pi;
        ff=Theta Map(t1,sigma) - x;
        fmiddle=ThetaMap(t2,sigma) - x;
    if ff < 0, t=t1; deltax=t2-t1;
    else t=t2; deltax=t1-t2; end \% if
    for j=1:itermax
    deltax=deltax*0.5; tmiddle=t + deltax;
            fmiddle= ThetaMap(tmiddle,sigma) - x;
            if(fmiddle <= 0), t=tmiddle; end \% if
    if ((abs(deltax) < epsilon) | (fmiddle == 0)),
break; end % if !
end \% j loop
```

Theta-Mapped Cosines:
Comparisons with Chebyshev Polynomials
Chebyshev polynomial

Figure 5: $N=30$. For the θ-mapping, $\sigma=5$

Theta-Mapped Cosines:
 Comparisons with Chebyshev Grid

Figure 6: Left panel: Chebyshev grid on left, θ-grid on right.

Theta-Mapped Cosines: Error for $u(x) \equiv x$

- Geometric convergence requires $\sigma \sim O(\sqrt{N})$
- Minimum grid spacing is then $O\left(N^{3 / 2}\right)$
- $\sigma \sim O(N) \Rightarrow$ uniform grid, but exponential convergence is destroyed

Figure 7:

θ-Mapped Cosines: Derivative Condition Numbers

- Chebyshev:
$\max \left(\left|e i g\left(\vec{\delta}_{2}\right)\right|\right) \sim 0.045 N^{4}$
- θ-map with $\sigma=\sqrt{N}$:

$$
\begin{equation*}
\max \left(\left|e i g\left(\overrightarrow{\vec{\delta}}_{2}\right)\right|\right) \sim 0.100 N^{3} \tag{9}
\end{equation*}
$$

Figure 8: The guidelines (dashed) are the asymptotic forms.

Theta-Mapped Cosines: Error for $u(x) \equiv \cos (k x)$

- Chebyshev needs minimum of $N=k$ pts.

Map reduces this to $N=(2 / \pi) k$
[asymptotically as $N \rightarrow \infty$]

- For well-resolved oscillations Map dramatically reduces error

Figure 9: $N=100$ point expansions of $\cos (100 x)$ and $\cos (70 x)$.

Theta-Mapped Cosines: Error for $u(x) \equiv \cos (k x)$

- $\sigma=0$ [left axis] is Chebyshev polynomials
- Error grows monotonically with k for fixed σ.
- As $N \rightarrow \infty$, error contours bunch up
- As $N \rightarrow \infty$, contours asymptote to $\pi / 2$ from below.

Figure 10: $N=100$ expansions of $\cos (k x)$ for various k with the θ-map with various σ. Dashed line is the asymptotic Chebyshev limit for the highest resolved wavenumber.

Theta-Mapped Cosines: Error for $u(x) \equiv \cos (k x)$ For a given error, σ was chosen to push the error contour as high in k as possible; the maximum k for that error is then plotted.

Figure 11: Number of resolved wavenumbers when σ has its optimum value, the value that pushes that particular error contour highest in k.

Optimizing Parameters

- No comprehensive theory as yet
- Theta-mapped theory harder than unbounded domain via steepest descent analysis
- Prolate theory really hard because prolate \Rightarrow Legendre for fixed c;
- Empirical, problem-dependent experimentation is best strategy for now
- Experimentation cost-effective for community models

Spectral Elements

- Prolate orthogonal with UNIT WEIGHT \Rightarrow trivial to replace Legendre
- Needs only grid, weights, derivatives-at-grid
- grid \& weights: Newton-Ralphson iteration functions/derivatives: Symmetric tridiagonal Legendre-Galerkin
- Theta-mapped cosines are almost orthogonal easy to Gram-Schmidt orthogonalize
- Best basis for multi-domains?

Figure 12:

Virtues of Cosine-Mapped Functions

1. Better resolution by $\pi / 2$
2. More uniform grid
3. Much larger CFL timestep limit Vices
4. All contain a free parameter
5. No theory for choosing parameter
6. More complicated to program than Chebyshev

Additional Conclusions

- Kosloff/Tal-Ezer inferior because of map singularity
- Prolate are orthogonal with unit weight easy to drop into spectral elements
- θ-map is best for single-domain (simplest!)

Future Problems

- theory for optimizing σ or c
- Empirical guidelines for σ or c
- Practical experience with "prolate elements", "theta elements", etc., on hard problems

