Toronto Talk is Thirty Minutes in Duration, 2:00 to 2:30 on Tuesday, August 13, 2002

John P. Boyd*
Department of Atmospheric, Oceanic and Space Science and Laboratory for Scientific Computation,
University of Michigan, 2455 Hayward Avenue, Ann Arbor MI 48109
jpboyd@engin.umich.edu;
http://www.engin.umich.edu:/~ jpboyd/

September 27, 2002

*

A Comparison of the Rate of Convergence, Efficiency and Condition Number of Chebyshev and Legendre Polynomial Series with Prolate Spheroidal, Kosloff/Tal-Ezer and Theta-Mapped Fourier Basis Sets

> John P. Boyd University of Michigan

> > August, 2002

Pseudospectral Methods: Good & Bad

Good:

- Geometric Converge: $E(N) \propto \exp(-qN)$ ["Infinite Order", "Exponential", "Spectral"]
- With domain decomposition, ("spectral elements"), parallelizes well

Bad:

- "Stiffness": CFL limit is $O(1/N^2)$ vs. O(1/N) for equispaced finite difference.
- Highly Non-Uniform Resolution: Linear-Density-in-Interior, Quadratic-Density-in-Boundary Layers
- Highly Non-Uniform Grid in each element.

THEMES:

• All five spectral basis sets here are cosines-with-change-of-coordinate

$$u(f[t]) = \sum_{j=1}^{\infty} a_j \cos(jt[x])$$

only the mapping t(x) is different.

• Non-Chebyshev mappings can improve grid uniformity which implies Much longer stable timestep

$$O\left(\sqrt{N}\right)$$

Better accuracy

[asymptotically $(\pi/2)$ per dimension]

• Multiple non-Chebyshev choices:
Kosloff/Tal-Ezer basis, prolate spheroidal,
theta-mapped cosines [NEW]

Mapped-Cosine Basis Functions

Ancient identity:

$$T_n(x) \equiv \cos(nt[x]), \qquad t(x) \equiv \arccos(x)$$
 (1)

Legendre polynomials are mapped cosines too:

$$P_n(x) \sim \{\operatorname{sign}(x)\}^n \frac{\sqrt{\operatorname{arccos}(|x|)}}{(1-x^2)^{1/4}} \times J_0\left(\left[n+\frac{1}{2}\right] \operatorname{arccos}(|x|)\right) + O\left(\frac{0.062}{n^{3/2}}\right)$$
(2)

Except near $x = \pm 1$, this simplifies to

$$P_n(x) \sim \frac{\{\text{sign}(x)\}^n}{(1-x^2)^{-1/4}} \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n+1/2}}$$

$$\times \cos\left(\left[n+\frac{1}{2}\right] \arccos(|x|) - \frac{\pi}{4}\right)$$

Query: Is the Mapping $t = \arccos(x)$ Optimum?

Three Mapped-Cosine Species That are Better
Than Chebyshev/Legendre:

- 1. Kosloff/Tal-Ezer Basis
- 2. Prolate Spheroidal Functions
- 3. Theta-Mapped Cosines

Advantages

- Nearly-Uniform Grid Improves Resolution by $\pi/2 \approx 1.57 \ per \ dimension$
- Timestep Lengthened by Order-of-Magnitude

Limits on Mapped Cosine Functions

Theorem 1 (Mapping Constraints) Let

$$u(f[t]) = \sum_{j=1}^{\infty} a_j \cos(jt[x])$$
 (3)

Infinite order convergence requires

- 1. All odd derivatives of $f(\tau)$ are zero at both $\tau = 0$ and $\tau = \pi$
- 2. $f(\tau)$ is symmetric with respect to both $\tau = 0$ and $\tau = \pi$
- 3. $f(\tau)$ is periodic with period 2π .
- 4. The inverse function, $\tau = f^{-1}(x)$, has branch points at $x = \pm 1$; if $d^2f/d\tau^2 \neq 0$ at $\tau = 0, \pi$, then the branch points are square roots.

Implications:

- 1. Grid cannot be completely uniform.
- 2. dt/dx must rise to vertical at $x = \pm \pi$.

Quasi-uniform, better-than-Chebyshev grid

IS POSSIBLE

Resolution of Mapped Cosines

- Evenly-spaced t-grid \Rightarrow non-uniform x-grid.
- Larger $dt/dx \Rightarrow \text{smaller } \delta x$
- Higher minimum resolution (by $\pi/2$) than Chebyshev.

Figure 1: The slopes, $d\tau/dx$, for six different basis sets.

Kosloff/Tal-Ezer Basis

$$\phi_n^{KT}(x;\beta) \equiv \cos(n t^{KT}(x))$$

$$t^{KT} = \arccos\left\{\frac{\sin\arcsin(1-\beta)x}{1-\beta}\right\}$$
(4)

$$\frac{dt^{KT}}{dx} \approx -\frac{\pi}{2} \qquad \forall |x| < 1 - O(\sqrt{\beta}), \qquad \beta << 1$$

i. e., maximum gridpoint separation $(\pi/2)$ smaller than Chebyshev

Table 1: Theory and Applications of Kosloff/Tal-Ezer Mapping

Comments
Introduction and numerical experiments
Theory; optimization of map parameter
Compares standard Chebyshev grid with Kosloff/Tal-Ezer grid
2D wave equations, one-way wave equation at boundary
wave problems
Chebyshev-Fourier polar coordinate model, stellar accretion disk
Wave equations with absorbing boundaries
Accuracy enhancement and timestep improvement, especially
for higher derivatives
3rd order PDE; mapping was not as
efficient as standard grid for $N < 16$
Shock waves, reactive flow
Analysis of Runge-Kutta time-integration
Diffractive optical elements; chose $\beta = 1 - \cos(1/2)$
to double timestep versus standard grid
Theory and experiment for convergence
of the mapping
cardial modelling in 2D

Kosloff/Tal-Ezer Basis: Virtues & Vices Virtues

If $\beta \sim \text{constant}/N^2$:

- 1. Nearly-uniform grid; $\pi/2$ better than Chebyshev/Legendre
- 2. CFL limit O(1/N), same as finite difference.

Vices

- 1. Mapping is singular; branch point moves to $x \in [-1, 1]$ as $\beta \to 0$
- 2. $\beta \sim O(1/N^2)$ destroys spectral accuracy

Kosloff/Tal-Ezer: Error in Series of $u(x) \equiv x$

- Geometric convergence is saved only if β is indpendent of N (bottom curve)
- CFL limit is still $O(1/N^2)$, but may gain a factor of two.

Figure 2: The error in the approximation of the linear function, $u(x) \equiv x$, by a Fourier cosine series using the Kosloff/Tal-Ezer mapping. When $\beta = 0.1224$, the choice of Hesthaven, Dinesen and Lynov(1999), the timestep limit is increased only by a factor of two, but the approximation still converges geometricaly. When $\beta = 1/N$, the timestep limit for a first order hyperbolic problem shrinks only as $O(1/N^{3/2})$ versus the more severe Chebyshev/Legendre/Hesthaven et al. limit of $O(1/N^2)$. However, the usual rate of geometric convergence with N has been slowed to a subgeometric rate (upper curve) with an error falling as $\exp(-\text{constant}N^{1/2})$.

Prolate Spheroidal Functions of Zeroth Order

"Prolate Spheroidal Wave Functions are likely to be a better tool for the design of spectral and pseudo-spectral techniques than the orthogonal polynomials and related functions"

- Xiao, Rokhlin & Yarvin(2001), pg. 837.
- Defined as solutions $\psi_n(x,c)$ of

$$(1 - x^2)\psi_{xx} - 2x\psi_x + \left\{\chi - c^2x^2\right\}\psi = 0$$

n is the mode number, χ_n is eigenvalue and c is a constant,the "bandwidth" parameter.

- $\bullet \ \psi_n(x; c=0) = P_n(x)$
- Complete asymptotic expansions are messy
- Relevant asymptotic expansion is simple.

Prolate Spheroidal Functions

"Transition bandwidth parameter"

$$c_*(n) \equiv \frac{\pi}{2} (n + 1/2)$$

Prolate functions span $x \in [-1, 1]$ only if $c \le c_*(n)$

Spheroidal: mode number=20

Figure 3: $\psi_{20}(x;c)$ in the x-c plane.

Χ

1 0

c/c*

Prolate Spheroidal Asymptotics

$$\psi_n(x;c) \sim \frac{\sqrt{\mathcal{E}(x;m)}}{(1-x^2)^{1/4} (1-mx^2)^{1/4}} \times J_0\left(\frac{c}{\sqrt{m}} \mathcal{E}(x;m)\right)$$

$$\mathcal{E}(x;m) \equiv \int_{x}^{1} dt \frac{\sqrt{1 - mt^2}}{\sqrt{1 - t^2}}; \qquad m \equiv c^2/\chi_n$$

When $|x| < 1 - O(1/\sqrt{c})$,

$$\psi_n(x;c) \sim \sqrt{\frac{2}{\pi}} \frac{m^{1/4}}{\sqrt{\chi_n}} \frac{1}{(1-x^2)^{1/4} (1-mx^2)^{1/4}} \times \cos\left(\frac{c}{\sqrt{m}} \mathcal{E} - \pi/4\right)$$

If $c = c_*(n)$, then

$$\psi_n(x; c = c_*(n)) \sim \sqrt{\frac{2}{\pi}} \frac{1}{c} \frac{1}{(1 - x^2)^{1/2}}$$

$$\times \cos\left(\frac{\pi}{2}n(1 - x)\right) (5)$$

Prolate Spheroidal Basis: Virtues & Vices Virtues

- 1. Nearly-uniform grid; $\pi/2$ better than Chebyshev/Legendre
- 2. CFL limit $O(1/N^{3/2})$
- 3. Orthogonal with unit weight, like Legendre Vices
- 1. Complicated to precompute function values & grid points

Symmetric tridiagonal Legendre-Galerkin Newton-Ralphson iteration for grid

2. Poorly-developed theory

Theta-Mapped Cosines

$$\phi_n^{\theta}(x;\sigma) \equiv \cos(n t^{\theta}(x))$$

$$t^{\theta} = \Xi^{-1}(x;\sigma) \tag{6}$$

$$\Xi(t;\sigma) \equiv \sum_{m=-\infty}^{\infty} (-1)^m V(t-\pi m)$$

$$/\sum_{m=-\infty}^{\infty} (-1)^m V(\pi m)$$

where

$$V = \frac{\pi}{2}t\operatorname{erf}(\sigma t) + \frac{\sqrt{\pi}}{2\sigma}\exp(-\sigma^2 t^2)$$
 (7)

- Ξ is 2d integral of Jacobian θ -function.
- $\Xi(t,0) \equiv \cos(t)$; basis $\Rightarrow T_n(x)$
- Unlike Kosloff/Tal-Ezer basis, θ -map is free of singularities

$$\frac{dt^{\theta}}{dx} \approx -\frac{\pi}{2}$$
 $\forall |x| < 1 - O(1/\sigma), \quad \sigma >> 1$

i. e., maximum grid point separation $(\pi/2)$ smaller than Chebyshev

Figure 4: Illustrated over three periods to explicitly show the periodicity of the map.

Theta-Mapped Cosines

Minor disadvantage:

lack of explicit inverse t(x)

Easy to compute numerically by bisection

Table 2: Inverse of Theta-Map: t(x)

```
function t=finverse_thetamap(x,sigma);
                 epsilon = 1.E-12;
 itermax=50;
                                      t1=0;
                                             t2=pi;
  ff=Theta Map(t1,sigma) - x;
   fmiddle=ThetaMap(t2,sigma) - x;
 if ff < 0, t=t1; deltax=t2-t1;
                                      end \% if
          t=t2;
                 deltax=t1-t2;
  for j=1:itermax
 deltax=deltax*0.5; tmiddle=t + deltax;
       fmiddle= ThetaMap(tmiddle,sigma) - x;
     if(fmiddle <= 0), t=tmiddle; end \% if
  if ((abs(deltax) < epsilon) | (fmiddle == 0)),</pre>
break; end % if!
end \% j loop
```

Theta-Mapped Cosines: Comparisons with Chebyshev Polynomials

Figure 5: N = 30. For the θ -mapping, $\sigma = 5$

Theta-Mapped Cosines: Comparisons with Chebyshev Grid

Figure 6: Left panel: Chebyshev grid on left, θ -grid on right.

Theta-Mapped Cosines: Error for $u(x) \equiv x$

- Geometric convergence requires $\sigma \sim O(\sqrt{N})$
- Minimum grid spacing is then $O(N^{3/2})$
- $\sigma \sim O(N) \Rightarrow$ uniform grid, but exponential convergence is destroyed

Figure 7:

θ -Mapped Cosines: Derivative Condition Numbers

• Chebyshev:

$$\max\left(\left|eig\left(\vec{\delta}_{2}\right)\right|\right) \sim 0.045 N^{4} \quad (8)$$

• θ -map with $\sigma = \sqrt{N}$:

$$\max\left(\left|eig\left(\vec{\delta}_2\right)\right|\right) \sim 0.100 N^3 \quad (9)$$

Figure 8: The guidelines (dashed) are the asymptotic forms.

Theta-Mapped Cosines: Error for $u(x) \equiv \cos(kx)$

- Chebyshev needs minimum of N=k pts. Map reduces this to $N=(2/\pi)k$ [asymptotically as $N\to\infty$]
- For well-resolved oscillations

 Map dramatically reduces error

Figure 9: N = 100 point expansions of $\cos(100x)$ and $\cos(70x)$.

Theta-Mapped Cosines: Error for $u(x) \equiv \cos(kx)$

- $\sigma = 0$ [left axis] is Chebyshev polynomials
- Error grows monotonically with k for fixed σ .
- As $N \to \infty$, error contours bunch up
- As $N \to \infty$, contours asymptote to $\pi/2$ from below.

Figure 10: N = 100 expansions of $\cos(kx)$ for various k with the θ -map with various σ . Dashed line is the asymptotic Chebyshev limit for the highest resolved wavenumber.

Theta-Mapped Cosines: Error for $u(x) \equiv \cos(kx)$ For a given error, σ was chosen to push the error contour as high in k as possible; the maximum k for that error is then plotted.

Figure 11: Number of resolved wavenumbers when σ has its optimum value, the value that pushes that particular error contour highest in k.

Optimizing Parameters

- No comprehensive theory as yet
- Theta-mapped theory harder than unbounded domain via steepest descent analysis
- Prolate theory really hard because prolate \Rightarrow Legendre for fixed c;
- Empirical, problem-dependent experimentation

is best strategy for now

• Experimentation cost-effective for community models

Spectral Elements

- ◆ Prolate orthogonal with UNIT WEIGHT
 ⇒ trivial to replace Legendre
- Needs only grid, weights, derivatives-at-grid
- grid & weights: Newton-Ralphson iteration functions/derivatives: Symmetric tridiagonal Legendre-Galerkin
- Theta-mapped cosines are *almost* orthogonal easy to Gram-Schmidt orthogonalize
- Best basis for multi-domains?

inner product of basis ["Gram" or "mass" matrix], σ =4

Figure 12:

Virtues of Cosine-Mapped Functions

- 1. Better resolution by $\pi/2$
- 2. More uniform grid
- 3. Much larger CFL timestep limit

Vices

- 1. All contain a free parameter
- 2. No theory for choosing parameter
- 3. More complicated to program than Chebyshev

Additional Conclusions

- Kosloff/Tal-Ezer inferior because of map singularity
- Prolate are orthogonal with unit weight easy to drop into spectral elements
- θ -map is best for single-domain (simplest!)

Future Problems

- ullet theory for optimizing σ or c
- ullet Empirical guidelines for σ or c
- Practical experience with "prolate elements", "theta elements", etc., on hard problems