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Pseudospectral Methods: Good & Bad

Good:

• Geometric Converge: E(N) ∝ exp(−qN)
[“Infinite Order”, “Exponential”, “Spectral”]

• With domain decomposition, (“spectral ele-
ments”), parallelizes well

Bad:

• “Stiffness”: CFL limit is O(1/N2) vs. O(1/N)
for equispaced finite difference.

• Highly Non-Uniform Resolution:
Linear-Density-in-Interior,
Quadratic-Density-in-Boundary Layers

• Highly Non-Uniform Grid in each element.

2



THEMES:

• All five spectral basis sets here are
cosines-with-change-of-coordinate

u(f [t]) =

∞∑
j=1

aj cos(jt[x])

only the mapping t(x) is different.

• Non-Chebyshev mappings can
improve grid uniformity which implies
Much longer stable timestep

O
(√

N
)

Better accuracy

[asymptotically (π/2) per dimension]

• Multiple non-Chebyshev choices:
Kosloff/Tal-Ezer basis, prolate spheroidal,

theta-mapped cosines [NEW]
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Mapped-Cosine Basis Functions

Ancient identity:

Tn(x) ≡ cos(nt[x]), t(x) ≡ arccos(x) (1)

Legendre polynomials are mapped cosines too:

Pn(x) ∼ {sign(x)}n

√
arccos(|x|)(
1 − x2

)1/4

× J0

([
n +

1

2

]
arccos(|x|)

)

+ O

(
0.062

n3/2

)
(2)

Except near x = ±1, this simplifies to

Pn(x) ∼ {sign(x)}n

(
1 − x2

)−1/4

√
2

π

1√
n + 1/2

× cos

([
n +

1

2

]
arccos(|x|) − π

4

)
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Query: Is the Mapping t = arccos(x)
Optimum?

Three Mapped-Cosine Species That are Better

Than Chebyshev/Legendre:

1. Kosloff/Tal-Ezer Basis

2. Prolate Spheroidal Functions

3. Theta-Mapped Cosines

Advantages

• Nearly-Uniform Grid Improves Resolution by
π/2 ≈ 1.57 per dimension

• Timestep Lengthened by Order-of-Magnitude
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Limits on Mapped Cosine Functions

Theorem 1 (Mapping Constraints) Let

u(f [t]) =

∞∑
j=1

aj cos(jt[x]) (3)

Infinite order convergence requires

1. All odd derivatives of f (τ ) are zero at both
τ = 0 and τ = π

2. f (τ ) is symmetric with respect to both τ =
0 and τ = π

3. f (τ ) is periodic with period 2π.

4. The inverse function, τ = f−1(x), has branch
points at x = ±1; if d2f/dτ2 �= 0 at τ =
0, π, then the branch points are square roots.

Implications:

1. Grid cannot be completely uniform.

2. dt/dx must rise to vertical at x = ±π.

Quasi-uniform, better-than-Chebyshev grid

IS POSSIBLE
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Resolution of Mapped Cosines

• Evenly-spaced t-grid ⇒ non-uniform x-grid.

• Larger dt/dx ⇒ smaller δx

• Higher minimum resolution (by π/2) than
Chebyshev.
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Figure 1: The slopes, dτ/dx, for six different basis sets.
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Kosloff/Tal-Ezer Basis

φKT
n (x; β) ≡ cos(n tKT (x))

tKT = arccos

{
sin arcsin(1 − β)x

1 − β

}
(4)

dtKT

dx
≈ −π

2
∀|x| < 1 − O(

√
β), β << 1

i. e., maximum gridpoint separation (π/2) smaller
than Chebyshev

Table 1: Theory and Applications of Kosloff/Tal-Ezer Mapping

References Comments
Kosloff&Tal-Ezer (1993) Introduction and numerical experiments

Tal-Ezer(1994) Theory; optimization of map parameter
Carcione(1994a) Compares standard Chebyshev grid with Kosloff/Tal-Ezer grid

Renaut&Frohlich(1996) 2D wave equations, one-way wave equation at boundary
Carcione(1996) wave problems
Godon(1997b) Chebyshev-Fourier polar coordinate model, stellar accretion disk
Renaut(1997) Wave equations with absorbing boundaries

Don&Solomonoff(1997) Accuracy enhancement and timestep improvement, especially
for higher derivatives

Renaut&Su(1997) 3rd order PDE; mapping was not as
efficient as standard grid for N < 16

Don&Gottlieb(1998) Shock waves, reactive flow
Mead&Renaut(1999) Analysis of Runge-Kutta time-integration
Hesthaven, Dinesen Diffractive optical elements; chose β = 1 − cos(1/2)

& Lynov(1999) to double timestep versus standard grid
Abril-Raymundo & Theory and experiment for convergence

Garćia-Archilla(2000) of the mapping
Zhan&Ng cardial modelling in 2D
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Kosloff/Tal-Ezer Basis: Virtues & Vices

Virtues

If β ∼ constant/N2:

1. Nearly-uniform grid; π/2 better than Cheby-
shev/Legendre

2. CFL limit O(1/N), same as finite difference.

Vices

1. Mapping is singular ;
branch point moves to x ∈ [−1, 1] as β → 0

2. β ∼ O(1/N2) destroys spectral accuracy
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Kosloff/Tal-Ezer: Error in Series of u(x) ≡ x

• Geometric convergence is saved only if β is
indpendent of N (bottom curve)

• CFL limit is still O(1/N2), but may gain a
factor of two.
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Kosloff/Tal-Ezer:  u=x

β=1/N
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Figure 2: The error in the approximation of the linear function, u(x) ≡ x, by a Fourier cosine series us-
ing the Kosloff/Tal-Ezer mapping. When β = 0.1224, the choice of Hesthaven, Dinesen and Lynov(1999),
the timestep limit is increased only by a factor of two, but the approximation still converges geometricaly.
When β = 1/N , the timestep limit for a first order hyperbolic problem shrinks only as O(1/N3/2) versus
the more severe Chebyshev/Legendre/Hesthaven et al. limit of O(1/N2). However, the usual rate of geo-
metric convergence with N has been slowed to a subgeometric rate (upper curve) with an error falling as
exp(−constantN1/2).
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Prolate Spheroidal Functions of Zeroth Order

“Prolate Spheroidal Wave Functions are likely
to be a better tool for the design of spectral
and pseudo-spectral techniques than the or-
thogonal polynomials and related functions”

— Xiao, Rokhlin & Yarvin(2001), pg. 837.

• Defined as solutions ψn(x, c) of

(1 − x2)ψxx − 2xψx +
{

χ − c2x2
}

ψ = 0

n is the mode number, χn is eigenvalue and
c is a constant,the “bandwidth” parameter.

• ψn(x; c = 0) = Pn(x)

• Complete asymptotic expansions are messy

• Relevant asymptotic expansion is simple.
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Prolate Spheroidal Functions

“Transition bandwidth parameter”

c∗(n) ≡ π
2 (n + 1/2)

Prolate functions span x ∈ [−1, 1] only if

c ≤ c∗(n)
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Figure 3: ψ20(x; c) in the x − c plane.
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Prolate Spheroidal Asymptotics

ψn(x; c) ∼
√

E(x; m)

(1 − x2)1/4 (1 − mx2)1/4

× J0

(
c√
m

E(x; m)

)

E(x; m) ≡
∫ 1

x
dt

√
1 − mt2√
1 − t2

; m ≡ c2/χn

When |x| < 1 − O(1/
√

c),

ψn(x; c) ∼
√

2

π

m1/4

√
χn

1

(1 − x2)1/4 (1 − mx2)1/4

× cos

(
c√
m

E − π/4

)

If c = c∗(n), then

ψn(x; c = c∗(n)) ∼
√

2

π

1

c

1

(1 − x2)1/2

× cos
( π

2
n (1 − x)

)
(5)
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Prolate Spheroidal Basis: Virtues & Vices

Virtues

1. Nearly-uniform grid; π/2 better than Cheby-
shev/Legendre

2. CFL limit O(1/N3/2)

3. Orthogonal with unit weight, like Legendre

Vices

1. Complicated to precompute function values
& grid points

Symmetric tridiagonal Legendre-Galerkin
Newton-Ralphson iteration for grid

2. Poorly-developed theory
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Theta-Mapped Cosines

φθ
n(x; σ) ≡ cos(n tθ(x))

tθ = Ξ−1(x; σ) (6)

Ξ(t; σ) ≡
∞∑

m=−∞
(−1)m V (t − πm)

/
∞∑

m=−∞
(−1)m V (πm)

where

V =
π

2
t erf(σt) +

√
π

2σ
exp(−σ2t2) (7)

• Ξ is 2d integral of Jacobian θ-function.

• Ξ(t, 0) ≡ cos(t); basis ⇒ Tn(x)

• Unlike Kosloff/Tal-Ezer basis,
θ-map is free of singularities
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dtθ

dx
≈ −π

2
∀|x| < 1 − O(1/σ), σ >> 1

i. e., maximum grid point separation (π/2)
smaller than Chebyshev
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Figure 4: Illustrated over three periods to explicitly show the periodicity of the map.
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Theta-Mapped Cosines

Minor disadvantage:
lack of explicit inverse t(x)
Easy to compute numerically by bisection

Table 2: Inverse of Theta-Map: t(x)
function t=finverse_thetamap(x,sigma);
itermax=50; epsilon = 1.E-12; t1=0; t2=pi;
ff=Theta Map(t1,sigma) - x;
fmiddle=ThetaMap(t2,sigma) - x;

if ff < 0, t=t1; deltax=t2-t1;
else t=t2; deltax=t1-t2; end \% if
for j=1:itermax
deltax=deltax*0.5; tmiddle=t + deltax;

fmiddle= ThetaMap(tmiddle,sigma) - x;
if(fmiddle <= 0), t=tmiddle; end \% if

if ((abs(deltax) < epsilon) | (fmiddle == 0)),
break; end % if !
end \% j loop
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Theta-Mapped Cosines:
Comparisons with Chebyshev Polynomials
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Figure 5: N = 30. For the θ-mapping, σ = 5
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Theta-Mapped Cosines:
Comparisons with Chebyshev Grid
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Figure 6: Left panel: Chebyshev grid on left, θ-grid on right.

19



Theta-Mapped Cosines: Error for u(x) ≡ x

• Geometric convergence requires σ ∼ O(
√

N)

• Minimum grid spacing is then O(N3/2)

• σ ∼ O(N) ⇒ uniform grid,
but exponential convergence is destroyed
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θ-Mapped Cosines: Derivative Condition
Numbers

• Chebyshev:

max

(∣∣∣∣eig
(


δ2

)∣∣∣∣
)

∼ 0.045 N4 (8)

• θ-map with σ =
√

N :

max

(∣∣∣∣eig
(


δ2

)∣∣∣∣
)

∼ 0.100 N3 (9)
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Figure 8: The guidelines (dashed) are the asymptotic forms.
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Theta-Mapped Cosines: Error for u(x) ≡ cos(kx)

• Chebyshev needs minimum of N = k pts.
Map reduces this to N = (2/π)k
[asymptotically as N → ∞]

• For well-resolved oscillations
Map dramatically reduces error
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Figure 9: N = 100 point expansions of cos(100x) and cos(70x).
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Theta-Mapped Cosines: Error for u(x) ≡ cos(kx)

• σ = 0 [left axis] is Chebyshev polynomials

• Error grows monotonically with k for fixed σ.

• As N → ∞, error contours bunch up

• As N → ∞, contours asymptote to π/2 from
below.
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Theta-Mapped Cosines: Error for u(x) ≡ cos(kx)
For a given error, σ was chosen to push the

error contour as high in k as possible; the max-
imum k for that error is then plotted.
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Optimizing Parameters

• No comprehensive theory as yet

• Theta-mapped theory harder than unbounded
domain via steepest descent analysis

• Prolate theory really hard because
prolate ⇒ Legendre for fixed c;

• Empirical, problem-dependent experimenta-
tion

is best strategy for now

• Experimentation cost-effective for
community models
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Spectral Elements

• Prolate orthogonal with UNIT WEIGHT
⇒ trivial to replace Legendre

• Needs only grid, weights, derivatives-at-grid

• grid & weights: Newton-Ralphson iteration
functions/derivatives: Symmetric

tridiagonal Legendre-Galerkin

• Theta-mapped cosines are almost orthogonal
easy to Gram-Schmidt orthogonalize

• Best basis for multi-domains?

inner product of basis ["Gram" or "mass" matrix], σ=4

Figure 12:
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Virtues of Cosine-Mapped Functions

1. Better resolution by π/2

2. More uniform grid

3. Much larger CFL timestep limit

Vices

1. All contain a free parameter

2. No theory for choosing parameter

3. More complicated to program than Cheby-
shev

Additional Conclusions

• Kosloff/Tal-Ezer inferior because of
map singularity

• Prolate are orthogonal with unit weight
easy to drop into spectral elements

• θ-map is best for single-domain (simplest!)
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Future Problems

• theory for optimizing σ or c

• Empirical guidelines for σ or c

• Practical experience with “prolate elements”,
“theta elements”, etc., on hard problems
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