PEL-type Shimura varieties

They arise as moduli spaces for polarized abelian varieties endowed with the action of a simple algebra over $\mathbb Q$ and a level structure.

Thm.(Shimura) They are smooth and projective varieties defined over a number field.

The PEL-data:

- $(\mathbf{B},*)$ is a finite dimensional simple algebra over \mathbb{Q} , together with a positive involution;
- (V, \langle, \rangle) is a nonzero finitely generated left B-module, together with a nondegenerate *-hermitian \mathbb{Q} -valued alternanting form.
- G/\mathbb{Q} is the algebraic group of the B-linear automorphisms of V preserving the pairing \langle,\rangle up to a scalar multiple;
- $G_1 \subset G$ is the subgroup of the B-linear automorphisms of V preserving the pairing \langle, \rangle .

Assumptions

- E = Z(B) is a quadratic imaginary extension of \mathbb{Q} ;
- $\bullet *_{\mid E}$ is complex conjugation,
- i.e. * is an involution of the II kind;
- \bullet p is a totally split prime in E,

i.e.
$$p = u \cdot u^c$$
 and $E_u = \mathbb{Q}_p$;

ullet B splits at the prime u,

i.e.
$$G(\mathbb{Q}_p) \simeq \mathbb{Q}_p^{\times} \times GL_n(\mathbb{Q}_p)$$
.

• $G_1(\mathbb{R}) \simeq U(q, n-q)$, with $1 \leq q \leq n$.

Remark (in progress): The following results generalize to all PEL-type Shimura varieties which are <u>unramified</u> at p,

i.e. $B_{\mathbb{Q}_p} = \prod_i M_{r_i}(L_i)$ for L_i/\mathbb{Q}_p unramified $\forall i$.

The cohomology of the Shimura varieties

Let $U \subset G(\mathbb{A}^{\infty})$ be a sufficiently small open compact subgroup.

Let X_U/E be the *Shimura variety* of level U.

$$\forall U \subset V : X_U \to X_V,$$

$$\forall g \in G(\mathbb{A}^{\infty}) : g : X_U \to X_{q^{-1}Uq}.$$

Let $l \neq p$ be a prime.

Def.
$$H^i(X, \mathbb{Q}_l) = \varinjlim_U H^i_{et}(X_U \times_E \overline{E}, \mathbb{Q}_l)$$

They are representations of $G(\mathbb{A}^{\infty}) \times Gal_E$.

We study the above representations when restricted to $G(\mathbb{A}^{\infty}) \times W_{E_u}$, where u|p, i.e. $H^i(X,\mathbb{Q}_l)_{|G(\mathbb{A}^{\infty}) \times W_{E_u}} = \varinjlim_U H^i_{et}(X_U \times_{E_u} \bar{E}_u, \mathbb{Q}_l)$.

The main theorem

Thm. There is an equality of virtual representations of $G(\mathbb{A}^{\infty}) \times W_{E_n}$

$$\sum_{n} (-1)^n H^n(X, \mathbb{Q}_l)^{\mathbb{Z}_p^{\times}} = \sum_{\alpha, d, e, f} (-1)^{d+e+f} \varinjlim_{M} \mathcal{E}_{\alpha, M}^{d, e, f}$$

and

$$\mathcal{E}_{\alpha,M}^{d,e,f} = Ext_{T_{\alpha}-smooth}^{d}(H_{c}^{e}(\mathcal{M}_{\alpha,M}^{\mathsf{rig}}, \mathbb{Q}_{l}(-D)), H_{c}^{f}(J_{\alpha}, \mathbb{Q}_{l}))$$

where

- $D = \dim X_U$,
- $\mathbb{Z}_p^{\times} \subset \mathbb{Q}_p^{\times} \subset \mathbb{Q}_p^{\times} \times GL_n(\mathbb{Q}_p) = G(\mathbb{Q}_p),$
- ullet the T_{lpha} 's are abstract p-adic groups;
- ullet the cohomology of the Igusa varieties $H_c^f(J_{lpha},\mathbb{Q}_l)$ is a representation of

$$T_{\alpha} \times G(\mathbb{A}^{\infty,p}) \times \mathbb{Q}_p^{\times}/\mathbb{Z}_p^{\times} \times W_{E_u}/I_u,$$

ullet the cohomology of the Rapoport-Zink spaces $\varinjlim_{M} H^e_c(\mathcal{M}^{\operatorname{rig}}_{\alpha,M},\mathbb{Q}_l)$ is a representation of

$$T_{\alpha} \times GL_n(\mathbb{Q}_p) \times W_{E_u}$$
.

Sketch of the proof

ullet construct integral models X of the Shimura varieties over $\mathcal{O}_{E_n} = \mathcal{O}_u$:

$$R\Gamma(X \times_{\mathcal{O}_u} \overline{k(u)}, R\Psi(\mathbb{Z}/l^r\mathbb{Z})) \simeq R\Gamma(X \times_{\mathcal{O}_u} \overline{E}_u, \mathbb{Z}/l^r\mathbb{Z}).$$

ullet stratify the reduction \bar{X} of the Shimura varieties by locally closed subschemes $\bar{X}^{(\alpha)}$:

$$\sum_{p} (-1)^{p} H^{p}(\bar{X}, \mathcal{F}) = \sum_{\alpha, j} (-1)^{j} H_{c}^{j}(\bar{X}^{(\alpha)}, \mathcal{F}_{|\bar{X}^{(\alpha)}}).$$

- ullet define a foliation of $\bar{X}^{(\alpha)}$ by closed smooth subschemes C_{Σ} .
- define the Igusa varieties as finite étale Galois covers $J_{\alpha} \to C_{\alpha} = C_{\Sigma_{\alpha}} \subset \bar{X}^{(\alpha)}$, for a fixed Σ_{α} .

construct a finite surjective morphism

$$\pi: J_{\alpha} \times \bar{\mathcal{M}}_{\alpha} \to \bar{X}^{(\alpha)}$$

invariant under the action of the p-adic group T_{α} , s.t.

"
$$(J_{\alpha} \times \bar{\mathcal{M}}_{\alpha})/T_{\alpha} \sim \bar{X}^{(\alpha)}$$
"

- deduce the existence of a spectral sequence $H_p(T_\alpha, H_c^q(J_\alpha \times \bar{\mathcal{M}}_\alpha, \pi^*\mathcal{F})) \Rightarrow H_c^{p+q}(\bar{X}^{(\alpha)}, \mathcal{F}).$
- compare the pullbacks of vanishing cycles sheaves

$$\pi^* R \Psi(\mathbb{Z}/l^r \mathbb{Z}_{/X}) \simeq p_2^* R \Psi(\mathbb{Z}/l^r \mathbb{Z}_{/\mathcal{M}}).$$

observe that

$$H_{\cdot}(T_{\alpha}, H_{c}^{\cdot}(J_{\alpha} \times \overline{\mathcal{M}}_{\alpha}, p_{2}^{*}R\Psi(\mathbb{Z}/l^{r}\mathbb{Z})) =$$

$$= Tor_{T_{\alpha}}^{\cdot}(H_{c}^{\cdot}(\overline{\mathcal{M}}_{\alpha}, R\Psi(\mathbb{Z}/l^{r}\mathbb{Z})), H_{c}^{\cdot}(J_{\alpha}, \mathbb{Z}/l^{r}\mathbb{Z}))$$

$$= Ext_{T_{\alpha}}^{\cdot}(H_{c}^{\cdot}(\mathcal{M}_{\alpha}^{\mathsf{rig}}, \mathbb{Z}/l^{r}\mathbb{Z}(-D)), H_{c}^{\cdot}(J_{\alpha}, \mathbb{Z}/l^{r}\mathbb{Z})).$$

The reduction of the Shimura varieties

Prop. If the level $U \subset G(\mathbb{A}^{\infty})$ is of the form

$$U = U^p(M) = U^p \times \mathbb{Z}_p^{\times} \times \{A \equiv \mathbb{I}_n \operatorname{mod} p^M\} \subset$$

$$\subset G(\mathbb{A}^{\infty,p}) \times \mathbb{Q}_p^{\times} \times GL_n(\mathbb{Q}_p) = G(\mathbb{A}^{\infty}),$$

then X_U has a proper model over \mathcal{O}_u . Moreover, if M = 0, X_U is smooth.

Rmk. As representations of $G(\mathbb{A}^{\infty}) \times W_{E_n}$

$$H^{i}(X, \mathbb{Z}/l^{r}\mathbb{Z})^{\mathbb{Z}_{p}^{\times}} = \varinjlim_{U^{p}, M} H^{i}_{et}(X_{U^{p}(M)} \times_{\mathcal{O}_{u}} \overline{E_{u}}, \mathbb{Z}/l^{r}\mathbb{Z}).$$

Fix $U^p \subset G(\mathbb{A}^{\infty,p})$:

- $\bullet \ \bar{X} = X_{U^p(0)} \times_{\mathcal{O}_u} k(u),$
- \bullet \mathcal{A}/\bar{X} the universal abelian variety.

Prop. There exists a Barsotti-Tate group

$$\mathcal{G} \subset \mathcal{A}[p^{\infty}]/\bar{X}$$

of dimension q and height n s.t.

 $\forall x \in |\bar{X}| : \mathcal{O}_{x,\bar{X}}^{\wedge}$ is the deformation ring of \mathcal{G}_x .

Serre-Tate Thm. $\mathcal{O}_{x,\bar{X}}^{\wedge}$ is the deformation ring of $\mathcal{A}_x[p^{\infty}]$ together with a <u>polarization</u> and an <u>action</u> of \mathcal{O}_{B_p} (maximal $\mathbb{Z}_{(p)}$ -order of $B_{\mathbb{Q}_p}$).

$$\mathcal{A}[p^{\infty}] = \mathcal{A}[u^{\infty}] \oplus \mathcal{A}[(u^c)^{\infty}]$$

and the polarization on $\ensuremath{\mathcal{A}}$ gives rise to an isomorphism

$$\mathcal{A}[u^{\infty}] \simeq \mathcal{A}[(u^c)^{\infty}]$$

as \mathcal{O}_{B_u} -modules.

We fix an isomorphism

$$B_u \simeq M_n(E_u) = M_n(\mathbb{Q}_p)$$

s.t. $\mathcal{O}_{B_u} \subset B_u$ corresponds to the maximal order $M_n(\mathcal{O}_{E_u}) \subset M_n(E_u)$.

Let $\epsilon \in \mathcal{O}_{B_u}$ be the *idempotent* corresponding to the matrix with $a_{1,1}=1$ and 0 elsewhere.

Let $\mathcal{G} = \epsilon \mathcal{A}[u^{\infty}]$. Then \mathcal{G} is a <u>BT group</u> and

$$\mathcal{A}[u^{\infty}] \simeq \mathcal{O}_{B_u} \otimes_{\mathcal{O}_{E_u}} \mathcal{G}.$$

The NP stratification and Oort's foliation

Let α be a Newton polygon of dim q and ht n. *Prop.* (Grothendieck) The set

$$\bar{X}^{(\alpha)} = \{x \in |\bar{X}| | \mathcal{N}(\mathcal{G}_x) = \alpha\} \subset \bar{X}$$

is locally closed.

Let Σ be a BT group, $\mathcal{N}(\Sigma) = \alpha$. Prop. (Oort) The set

$$C_{\Sigma} = \{ x \in |\bar{X}| | \mathcal{G}_x \simeq \Sigma \times k(x) \} \subset \bar{X}^{(\alpha)}$$

is closed and as a reduced closed subscheme is smooth.

Rmk. The action of $G(\mathbb{A}^{\infty,p})$ on \bar{X} preserves both the NP stratification and Oort's foliation.

Complete slope divisible BT groups

Prop.(Grothendieck, Zink) Let S be a smooth scheme of char p, and \mathcal{H}/S a BT group with constant Newton polygon.

- (1) \mathcal{H} is isogenous to a c.s.d. BT group endowed with a slope filtration.
- (2) If $S = \operatorname{Spec} k$, for k a perfect field the slope filtration of a c.s.d. BT group canonically splits.

Let α be a Newton polygon of dim q and ht n:

- $1 \ge \lambda_1 \ge \cdots \lambda_k \ge 0$ the slopes of α ,
- $\Sigma_{\alpha}/\mathbb{F}_p$ a c.s.d. BT group with $\mathcal{N}(\Sigma_{\alpha}) = \alpha$.
- $\Sigma_{\alpha} = \bigoplus_{i} \Sigma^{i}$, for Σ^{i} slope divisible isoclinic BT groups of slope λ_{i} .
- $T_{\alpha} = \operatorname{QIsog}(\Sigma_{\alpha}) = \operatorname{Isog}(\Sigma_{\alpha}) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$, $T_{\alpha} = \prod_i M_{r_i}(D_i)$, where D_i/\mathbb{Q}_p are finite dimensional division algebras.

The Igusa varieties

Let $C_{\alpha} = C_{\Sigma_{\alpha}}$ be the leaf associated to Σ_{α} .

Prop.(Zink) The universal BT group \mathcal{G}/C_{α} is completely slope divisible with slope filtration

$$0 \subset \mathcal{G}_1 \subset \cdots \subset \mathcal{G}_k = \mathcal{G}$$

where

- $\mathcal{G}^i = \mathcal{G}_i/\mathcal{G}_{i-1}$ is s.d. isoclinic of slope λ_i ,
- $\forall x \in |C_{\alpha}| : \mathcal{G}_{x}^{i} \simeq \Sigma^{i} \times k(x).$

Def. The Igusa variety $J_{\alpha,m}$ of level $m \geq 1$ is the universal space for the existence of isomorphisms

$$\phi_m^i : \mathbf{\Sigma}^i[p^m] \simeq \mathcal{G}^i[p^m] \qquad \forall i = 1, \dots, k$$

étale locally extendable to any level $m' \geq m$.

Prop. (1) $J_{\alpha,m} \to C_{\alpha}$ are finite étale Galois. (2) $\Gamma_{\alpha} = \operatorname{Aut}(\Sigma_{\alpha})$ acts on the Igusa varieties

$$\forall \gamma = (\gamma^i) \in \Gamma_\alpha : (A, \phi_m^i) \mapsto (A, \phi_m^i \circ \gamma_{|[p^m]}^i).$$

Let $J_{\alpha,U^p,m}$ be the Igusa varieties of level m over $C_{\alpha,U^p}\subset \bar{X}_{U^p(0)}$.

Prop. (1) There exists an action of the group $G(\mathbb{A}^{\infty,p}) \times \mathbb{Q}_p^{\times}$ on the Igusa varieties $J_{\alpha,U^p,m}$,

$$\forall g \in G(\mathbb{A}^{\infty,p}) \times \mathbb{Q}_p^{\times} : J_{\alpha,U^p,m} \to J_{\alpha,g^{-1}U^pg,m}$$

compatible with the action on the Shimura varieties.

- (2) There exists a submonoid $\Gamma_{\alpha} \subset S_{\alpha} \subset T_{\alpha}$ s.t.
- (i) the action of Γ_{α} on the Igusa varieties extends to an action of S_{α} ,
- (ii) $T_{\alpha} = \langle S_{\alpha}, p, fr \rangle$ and $p^{-1}, fr^{-1} \in S_{\alpha}$.

Prop. The cohomology of the Igusa varieties

$$H_c^j(J_{\alpha}, \mathbb{Z}/l^r\mathbb{Z}) = \varinjlim_{U^p, m} H_c^j(J_{\alpha, U^p, m} \times_{k(u)} \overline{k(u)}, \mathbb{Z}/l^r\mathbb{Z})$$
 is a representation of

$$T_{\alpha} \times G(\mathbb{A}^{\infty,p}) \times \mathbb{Q}_p^{\times}/\mathbb{Z}_p^{\times} \times W_{E_u}/I_u.$$

The Rapoport-Zink spaces

For each α , we consider the RZ spaces associated to the BT group Σ_{α} .

They are rigid analytic spaces over E_u^{nr} which arise as moduli spaces for BT groups endowed with a *quasi-isogeny* from Σ_{α} and a level structure.

Let $V \subset GL_n(\mathbb{Q}_p)$ an open compact subgroup. Let $\mathcal{M}_{\alpha,V}^{\mathsf{rig}}$ be the RZ space of level V.

 $T_{\alpha} = \mathsf{QIsog}(\Sigma_{\alpha})$ acts on the RZ spaces

$$\forall \rho \in T_{\alpha} : (H, \beta) \mapsto (H, \beta \circ \rho)$$

Def. The cohomology of Rapoport-Zink spaces

$$\varinjlim_{V} H^k_c(\mathcal{M}^{rig}_{\alpha,V} \times_{E^{ur}_u} \overline{E_u}, \mathbb{Z}/l^r\mathbb{Z})$$

is a representation of $T_{\alpha} \times GL_n(\mathbb{Q}_p) \times W_{E_u}$.

Prop. Let $V = \{A \equiv \mathbb{I}_n \mod p^M\}$, $M \geq 0$. Then $\mathcal{M}_{\alpha,V}^{rig}$ has an model $\mathcal{M}_{\alpha,M}$ over Spf $\mathcal{O}_{E_u^{ur}}$. Moreover, if M = 0, the formal scheme $\mathcal{M}_{\alpha,0}$ is formally smooth.

The morphism π

Let $\bar{\mathcal{M}}_{\alpha} = \mathcal{M}_{\alpha,0} \times_{\mathcal{O}_{E_{u}^{ur}}} \overline{k(u)}$.

Prop. (Rapoport-Zink) Let $x \in |C_{\alpha}|$ and fix an isomorphism $\phi : \Sigma_{\alpha} \simeq \mathcal{G}_x$. There exists a map

$$f_{\phi}: \bar{\mathcal{M}}_{\alpha} \twoheadrightarrow Isog_{x} \subset \bar{X}^{(\alpha)} \times \overline{k(u)}$$

s.t. $(\Sigma_{\alpha}, \mathbb{I}) \in |\overline{\mathcal{M}}_{\alpha}|$ maps to $x \in |\overline{X}^{(\alpha)} \times \overline{k(u)}|$.

Idea: The "isomorphism" leaves C_x and the "isogeny" leaves $Isog_x$ are two orthogonal directions inside $\bar{X}^{(\alpha)}$, i.e.

"
$$C_x \times Isog_x \sim \bar{X}^{(\alpha)}$$
"

Def. (truncated RZ spaces) $\forall n, d$, the set $\bar{\mathcal{M}}_{\alpha}^{n,d} = \{(H,\beta) \in |\bar{\mathcal{M}}_{\alpha}| | p^n \beta, p^{d-n} \beta^{-1} \text{ are isogenies} \}$ is closed in $\bar{\mathcal{M}}_{\alpha}$.

Rmk: $f_{\phi_{\mid \mathcal{ar{M}}^{n,d}_{lpha}}}$ depends only on the restriction

$$\phi_{|[p^d]}: \Sigma_{\alpha}[p^d] \simeq \mathcal{G}_x[p^d].$$

Lemma. Let \mathcal{G} be a c.s.d. BT group with slope filtration $0 \subset \mathcal{G}_1 \subset \cdots \subset \mathcal{G}_k = \mathcal{G}$.

Then $\forall d \geq 1$, $\exists N_d \geq 1$ s.t. canonically

$$\mathcal{G}^{(p^N)}[p^d] \simeq \prod_i \mathcal{G}^{i(p^N)}[p^d] \qquad \forall N \geq N_d.$$

Main Constr. $\forall m, n, d, N \text{ s.t. } m \geq d, N \geq d,$

$$\exists \quad \pi_N : J_{\alpha,m} \times \bar{\mathcal{M}}_{\alpha}^{n,d} \to \bar{X}^{(\alpha)} \times \overline{k(u)} \quad \text{s.t.}$$

- ullet π_N is finite and surjective for $m,n,d\gg 0$,
- \bullet $\forall m' \geq m$, $\pi_N \circ (q_{m',m} \times 1) = \pi_N$,
- ullet $orall n'-n\geq d'-d\geq 0$, $\pi_N\circ (1 imes i_{n,d}^{n',d'})=\pi_N$,
- $\bullet \ \pi_{N+1} = (Fr^B_{\bar{X}} \times 1) \circ \pi_N,$
- $\forall \rho \in S_{\alpha}, \ \pi_N \circ (\rho \times \rho) = \pi_N.$
- \bullet π_N commute with the action of Frobenius.

Prop. $\forall x \in |\bar{X}^{(\alpha)}|$, the fiber $\Pi^{-1}(x) = \{\pi_N^{-1}(x)\}_N$ is a free T_{α} -principal homogeneous space.

The spectral sequence

Let \mathcal{L} be an abelian torsion sheaf over $\bar{X}^{(\alpha)}$, with torsion orders prime to p (e.g. $\mathcal{L} = \mathbb{Z}/l^r\mathbb{Z}$, $R\Psi(\mathbb{Z}/l^r\mathbb{Z})$).

Prop. (1) For all m, n, d the sheaves

$$\mathcal{F}_m^{n,d} = (Fr_{\bar{X}(\alpha)}^{NB} \times 1)^* (\pi_N)_! (\pi_N)^* (Fr_{\bar{X}(\alpha)}^{NB} \times 1)_! (\mathcal{L})$$
 form a direct limit;

- (2) the sheaf $\mathcal{F} = \varinjlim_{m,n,d} \mathcal{F}_m^{n,d}$ is endowed with a smooth action of T_α and a morphism $\mathcal{F} \to \mathcal{L}$;
- (3) for all points x in $\bar{X}^{(\alpha)}$

$$\mathcal{F}_x = C^{\infty}(\Pi^{-1}(x), \mathcal{L}_x) \simeq \mathsf{c} - \mathsf{Ind}_{\{1\}}^{T_{\alpha}}(\mathcal{L}_x);$$

(4) If \mathcal{L} is endowed with an acton of $W_{\mathbb{Q}_p}$, then \mathcal{F} is also and the two actions are compatible.

Prop. There is a $W_{\mathbb{Q}_p}$ -equivariant spectral sequence

$$E_2^{p,q} = H_p(T_\alpha, H_c^q(\bar{X}^{(\alpha)}, \mathcal{F})) \Rightarrow H_c^{p+q}(\bar{X}^{(\alpha)}, \mathcal{L}).$$

Suppose \mathcal{L} is a l^r -torsion sheaf.

Let $p_2: J_{\alpha,m} \times \bar{\mathcal{M}}_{\alpha}^{n,d} \to \bar{\mathcal{M}}_{\alpha}$ be the projection.

Prop. (Künneth formula) If $\pi^*\mathcal{L} \simeq p_2^*\mathcal{D}$, for a sheaf $\mathcal{D}/\bar{\mathcal{M}}_{\alpha}$, then

$$\bigoplus_{s+t=q} Tor_{T_{\alpha}}^{p}(H_{c}^{s}(\bar{\mathcal{M}}_{\alpha}, \mathcal{D}), H_{c}^{t}(J_{\alpha}, \mathbb{Z}/l^{r}\mathbb{Z})) \Rightarrow$$

$$\Rightarrow H_c^{p+q}(\bar{X}^{(\alpha)}, \mathcal{L})$$

(e.g. $\mathcal{L} = \mathbb{Z}/l^r\mathbb{Z}$ and $\mathcal{D} = \mathbb{Z}/l^r\mathbb{Z}$.)

Let $f_M: X_M \to X$ between Shimura varieties, and $\mathcal{L} = R\Psi(f_{M*}\mathbb{Z}/l^r\mathbb{Z}_{/X_M})_{|\bar{X}^{(\alpha)}}.$

Let $g_M: \mathcal{M}_{\alpha,M}^{\operatorname{rig}} \to \mathcal{M}_{\alpha}^{\operatorname{rig}}$ between the RZ spaces.

Prop. There exists a system of $W_{\mathbb{Q}_p}$ -equivariant isomorphisms

$$\pi^* R \Psi(f_{M*} \mathbb{Z}/l^r \mathbb{Z}_{/X_M})_{|\bar{X}(\alpha)} \simeq p_2^* R \Psi(g_{M*} \mathbb{Z}/l^r \mathbb{Z}_{/\mathcal{M}_{\alpha,M}}).$$

Lifting to formal schemes over $\widehat{\mathbb{Z}}_p^{nr}$

Let $\mathfrak{X}=X^{\wedge}_{/\bar{X}}$ and $\mathfrak{C}_{\alpha}=X^{\wedge}_{/C_{\alpha}}$. Let $\mathcal{J}_{\alpha,m}\to\mathfrak{C}_{\alpha}$ be the finite étale Galois covers corresponding to $J_{\alpha,m}\to C_{\alpha}$.

Let $\mathfrak{X}_M \to \mathfrak{X}$ and $\mathcal{M}_{\alpha,M} \to \mathcal{M}_{\alpha,M}$ be the spaces with structure of level M at p.

Let $Y/\operatorname{Spf}\widehat{\mathbb{Z}}_p^{nr}$, \mathcal{I} an ideal of definition of Y, $p\in\mathcal{I}$. Then $Y(t)=Z(\mathcal{I}^t)$ over $\widehat{\mathbb{Z}}_p^{nr}/p^t$.

ullet For any t, when $m,N\gg d,t$, the morphisms $\pi_N:J_{\alpha,m}\times\mathcal{M}^{n,d}_{\alpha}\to \bar{X}^{(\alpha)}$ lift to some morphisms

$$\pi_N(t): (\mathcal{J}_{lpha,m} imes \mathcal{M}^{n,d}_{lpha})(t) o \mathfrak{X}(t)$$

s.t. $\pi_N(t)^*(\mathfrak{X}_{t/2}) \simeq p_2(t)^*(\mathcal{M}_{\alpha,t/2})$, and also $\pi_N(t)(t-1) = \pi_N(t-1)$.

ullet For any affine open $V\subset \mathcal{J}_{\alpha,m} imes \mathcal{M}^{n,d}_{\alpha}$, the morphism $\pi_N(t)_{|V|}$ lifts to a morphism

$$\pi_{V,t}:V\to\mathfrak{X}$$

s.t. $\pi_{V,t}^*(\mathfrak{X}_{t/2}) \simeq p_{2|V}^*(\mathcal{M}_{\alpha,t/2}).$

Comparing vanishing cycles

Prop. (1) If $t/2 \geq M$, the morphisms $\pi_{V,t}$ give rise to some $W_{\mathbb{Q}_p} \times T_\alpha \times GL_n(\mathbb{Q}_p)$ -equivariant isomorphisms over $\bar{V} = V \times \bar{\mathbb{F}}_p$

 $\pi^* R \Psi(f_{M*} \mathbb{Z}/l^r \mathbb{Z}_{/X_M})_{|\bar{V}} \simeq p_2^* R \Psi(g_{M*} \mathbb{Z}/l^r \mathbb{Z}_{/\mathcal{M}_{\alpha,M}})_{|\bar{V}}.$ (2) $\forall M \exists t_0$ such that the above isomorphism piece together, for $t \geq t_0$.

Rmk. As M varies, the above sheaves form a system with an action of $\langle GL_n(\mathbb{Z}_p), pI_n \rangle \subset GL_n(\mathbb{Q}_p)$. By introducing many more models one is able to recover the action of the whole group $GL_n(\mathbb{Q}_p)$.

The cohomology of the RZ spaces

Let Π be an admissible \mathbb{Q}_l -representation $T_{\alpha} \times W_{\mathbb{Q}_p}$ (e.g. $\Pi = H_c^q \cdot (J_{\alpha,U^p}, \mathbb{Q}_l)$, for some $q \geq 0$).

Thm. (1) All the representations appearing below are admissible.

(2) There is an equality of virtual $\mathbb{Z}/l^r\mathbb{Z}$ -representation of $GL_n(\mathbb{Q}_p) \times W_{\mathbb{Q}_p}$

$$\varinjlim_{M} Tor_{T_{\alpha}}^{\bullet}(H_{c}^{\bullet}(\bar{\mathcal{M}}_{\alpha,M}, R^{\bullet}\Psi(\mathbb{Z}/l^{r}\mathbb{Z})), \Pi) =$$

$$= \varinjlim_{M} Ext_{T_{\alpha}}^{\bullet}(H_{c}^{\bullet}(\mathcal{M}_{\alpha,M}^{\mathsf{rig}} \times \bar{E}_{u}, \mathbb{Z}/l^{r}\mathbb{Z}(-D)), \Pi).$$