

The Mutual Fund Ratings Game

What is the "Risk" in Risk-Adjusted Performance?

Michael Stutzer

Professor of Finance and Director,
Burridge Center for Securities Analysis and Valuation
University of Colorado
Boulder, CO 80309

Published Fund Ratings

- Morningstar, Lipper, Standard and Poors and Schwab Use Different Risk-Adjusted Performance Measures To Rank Funds
 - These Ratings Can Influence Fund Flows; see Del Guercio and Tkac (2001)
 - Large Institutional Investors Also Use Risk-Adjusted Performance Measures, e.g. Sharpe Ratio.
 - The Meaning of These Measures is Obscure
 - What IS the "Risk" That Justifies Reducing the Importance of a Fund's Historical Cumulative Return?
 - IS this relevant for all, some, or no investors?

Summary of Presentation

- Motivating Example: Equity Fund vs. Index
- Risk of Underperforming a Benchmark
 - Importance of Benchmark Choice
 - An Underperformance Risk-Adjusted Performance Measure: LMIR
- Description of Published Performance Measures
 - Enlightening Approximations
 - Comparison to LMIR
- Practical Problems Plaguing Published Performance Rankings
 - Nonexistent or Irrelevant Benchmarks
 - Historical Average Returns Inaccurately Estimate Long-Run Averages
- Proposed Palliatives
 - Adopt Benchmarks Closely Correlated With Ranked Funds
 - Use Filtering Techniques to Improve Estimation of Long-Run Averages
 - Adopt LMIR, so that the "Risk" Adjustment is for the Risk that a Fund Will Underperform a Relevant Benchmark

Will This Fund Beat The Index In the Future?

Figure 1: Volatile Fund Beats Market Index

- -- Fund Beat Index Historically, But is More Volatile
- -- Could Higher Volatility Lead to Underperformance?

Fund is Volatile but Highly Correlated

Figure 2: Volatile Mutual Fund vs. Market Index

Monthly Returns: 1980 - 2001

- -- Typifies Funds that Beat Index Historically
- -- Fund Will Get Hammered in Bear Markets

Simulating Possible Futures

- Randomly Resample Past Months
- String Resampled Months' Returns Together to Produce Possible Future Cumulative Returns for Fund and Index
 - Repeat Many Times
 - Compute Fraction of Simulations Where Fund Loses to Index. This Estimates the Underperformance Risk.

Alternatively:

- -- One Could Do Fancier "Block" Version of This
- One Could Build Parametric Model for the Differential Return of the Fund from the Index

Simulated Underperformance Probabilities

Probability of Underperforming the Market Index

- -- So Probability That Fund Beats Index > 1/2
- -- But Underperformance Prob Persists For a Long Time!!

Compare Fund and Index to T-Bills

Figure 4: Probability of Underperforming T- Bills

- If Investor Benchmark is T-Bills, Then the Index is Better than the Fund
 - -- Index is Better Because Its Underperformance Probs. Decay Faster

Outperformance Ranking: Lesson 1

- The Choice of Benchmark is Critical
 - Fund Has a Better Than Even Chance of Beating an Index Benchmark
 - But Index Has a Higher Chance of Beating a T-Bill Benchmark Than the Fund Does
- Significant Underperformance Probabilities Persist Over Surprisingly Long Holding Periods
 - But the Probs. Decay to Zero as the Holding Period Lengthens to Infinity.
 - So it is Important for the Underperformance Probabilities Decay to Zero Quickly (i.e. a High Rate of Decay) as the Holding Period Lengthens.
- An Underperformance Risk-Adjusted Performance Measure Will Be Directly Related to the Underperformance Probability Decay Rate.

Underperformance Risk-Adjusted Performance Ranking Measure:

Let Log[1+Rb] = Log Gross Monthly Return From Investor's Benchmark

Rank Funds In Accord With the Size of:

Average Log[1+R^{fund}] – Average Log[1+R^b]
Std.Deviation(Log[1+R^{fund}] - Log[1+R^b])

= Log-Modified Information Ratio

Log-Modified Information Ratios

```
Average Log[1+R<sup>fund</sup>] – Average Log[1+R<sup>index</sup>]
Std.Deviation(Log[1+R<sup>fund</sup>] - Log[1+R<sup>index</sup>])
= (1.35\% - 1.10\%) \div 7.83\% = 3.2\% > 0
```

So The Fund Will Eventually Outperform the Index, i.e. Its Underperformance Probs Decay to Zero as Holding Period Lengthens. If the Number Were Larger than 3.2%, the Probs Would Decay Faster.

```
Average Log[1+R<sup>index</sup>] – Average Log[1+R<sup>bill</sup>]
Std.Deviation(Log[1+R<sup>index</sup>] - Log[1+R<sup>bill</sup>])
= (1.10\% - 0.54\%) \div 4.56\% = 12.4\%
versus the fund's:
(1.35\% - 0.54\%) \div 11.55\% = 7.0\%
```

So With a T-Bill Benchmark, The Index is Ranked Higher Than the Fund

Comparison to Sharpe Ratio

The Most Common Risk-Adjusted Measure:

- Always Uses T-Bill ("Riskless") Benchmark
- Substitutes Net Return R for Log[1+R]
 - Critical Difference When Fund is Volatile
- Traditional SR Motivation is 1960's One-Period Model

Example Comparison

```
SR = \underbrace{Average \ R^{fund} - Average \ R^{bill}}_{Std.Deviation(R^{fund} - R^{bill})}
SR^{fund} = (1.99\% - 0.54\%) \div 10.83\% = 13.4\%
SR^{index} = (1.21\% - 0.54\%) \div 4.52\% = 14.9\%
```

SR^{mdex} = (1.21% - 0.54%) ÷ 4.52% = 14.9% So SR Ranks Index Higher Than Fund, Despite Fund's Higher Probability of Beating the Index, Seen From

```
Log Modified Information Ratio = 

Average Log[1+R<sup>fund</sup>] - Average Log[1+R<sup>index</sup>]

Std.Deviation(Log[1+R<sup>fund</sup>] - Log[1+R<sup>index</sup>])

= (1.35\% - 1.10\%) \div 7.83\% = 3.2\% > 0
```

Note: Log Modified Information Ratio Ranking ≠ Value-At-Risk Ranking

Outperformance Ranking: Lesson 2

- In Practice, a Positive Log-Modified Information Ratio (LMIR)
 Indicates That the Fund Will Eventually Outperform Its Benchmark.
- The Size of the LMIR Is Directly Related to the Rate At Which The Underperformance Probability Decays to Zero as the Holding Period Lengthens.
- The Sharpe Ratio (SR) Appears Similar, But Isn't the Same.
 - The Sharpe Ratio Has Similar Properties When:
 - The Relevant Benchmark is T-Bills
 - The Fund isn't Too Volatile, So Log[1+R] ≈ R
- Both LIMR and SR Depend on the <u>Ratio</u> of an Average to a Standard Deviation.
- As Will Be Seen, Many Published Rating Systems Depend (De-Facto) On the <u>Difference</u> of an Average and a Standard Deviation.

- Standard and Poors
 - Partition Funds into Investment Style Bins
 - Use Returns-Based Statistical Analysis to Do This
 - Compute Fund Annual Return and Sharpe Ratio
 (Using 3 yr. Std. Dev.) For Each of 3 Previous Years
 - Sort the Fund's Bin by Annual Return into Percentiles in <u>Each</u> of 3 Previous Years; then Average the 3 Percentile Rankings to Place Each Fund in a Decile
 - Do the Same Sorting and Averaging by Sharpe Ratio
 - Average the Above Two Decile Rankings
 - Separately From This, They Interview Managers' "Quality"

Morningstar

- Partition Funds into 48 Bins
 - Representing Combos of Size, Style, Asset Class, Sector, etc.
- Compute Separate 120, 60, and 36 month Ranking Statistic Equivalent To:

```
Average of -[(1+R^{fund})/(1+R^{bill})]^{-\gamma} Using \gamma = 2
```

- Always Uses T-Bill Benchmark, Like Sharpe Ratio Does
- Sort the Fund's Bin Separately for 120, 60, and 36 month stats
- Top 10% Get ***** Rating, Bottom 10% Get * Rating
- Overall Rating is a Declining Weighted Average of Separates

- Lipper: Uses Several Different Systems
 - Lipper "Consistent Return"
 - Partitions Funds Into Lipper's Bins
 - Like S & P and Schwab, Combines Two Stats
 - Hurst Exponent: Weird Measure of Return Smoothness
 - Effective Return = Average Exponential Utility, Using Two Coefficients of Risk Aversion: Higher Coefficient is Used to Evaluate Losses (see Dacorogna, Gencay, et.al., Olson and Associates, 1999).
 - Uses Un-Weighted Average of 120,60,and 36 month Percentile Rankings.
 - Top 20% Are "Lipper Leaders For Consistent Return"

- Lipper "Preservation"
 - Partitions Funds into One of Three Bins: Equity, Mixed Equity, or Fixed Income
 - Compute Separate 120, 60, and 36 Month Ranking Statistic
 Equivalent To:

Average of Min[0, Rfund]

- So Funds With Fewer and/or Smaller Negative Returns Are Ranked Higher
- Uses Un-Weighted Average of 120,60, and 36 month Percentile Rankings. Top 20% Are "Lipper Leaders For Preservation"

Comparison of Rating Systems

- Facilitated By the Following Approximations:
 - Lipper Preservation: Average R^{fund} (Std. Dev. R^{fund})
 - Morningstar: Average Log [1+R^{fund}] -(Std. Dev. Log [1+ R^{fund}])²
 - Both Companies Confirm the Accuracy of Approximations
 - Standard and Poors: Average Rfund + Sharpe Ratio
 - Schwab: Similar to Standard and Poors
- All Systems Reward High Average Return and Penalize High Volatility
 - As a Result, Different Firms' Rankings Would Be Fairly Similar Within the Same Bin, Using the Same Number of Historical Monthly Returns

Rank Correlation of Seemingly Dissimilar Systems

Summary of Comparisons

Summary of De-Facto Weightings of Averages and Standard Deviations

Performance Measure	Benchmark	Return Average	Standard Deviation
Sharpe Ratio	T-Bill	Net	Divided Into
Morningstar	T-Bill	Log Gross	Squared and Subtracted From
Lipper Preservation	Zero	Net	Subtracted From
Log Information Ratio	User-Selected	Log Gross	Divided Into

Morningstar's Ranking Can Also Be Transformed Into LMIR Ranking By Changing its Fund-Independent Value of γ =2 to the Value of γ that Maximizes It (see the Paper's Appendix).

Implementation Problems

- A Fund's Bin Assignment and Benchmark Is Critical
 - Published Rating Systems Assign Funds to Bins Differently
 - Published Rating Systems Use Either a T-Bill or No Benchmark
 - Investors Want to Beat Relevant Benchmarks, Not T-Bills
- 36 Months of Historical Returns Is Too Few To Get An Accurate Estimate of Long-Run Average Returns
 - All Rating Systems (De-Facto) Depend Heavily on Avg. Return
 - This Inaccuracy Could Lead to Spurious Instability of Fund Rankings
 - Standard Deviations Not As Problematic: More Frequent Measurement (e.g. weekly, daily, etc.) Improves Accuracy

Instability of 36 Month Historical Averages vs. Std. Devs.

Partial Solutions

- Both Problems Can Be Partially Solved By Using a Bin-Specific Benchmark, Highly Correlated with Funds in Bin
 - Historical Average *Difference* of Fund from Benchmark's Return May Be a Better Estimate of its Long-Run Difference than the Fund's Average Return is of its Long-Run Return.
 - It is Important That the Fund is Highly Correlated with Its Benchmark
 - If a Highly Correlated Benchmark Has a Longer Return History
 Than the Fund, *Filtering* Methods Can Be Used to Improve
 Estimates of the Fund's Long Run Average.
 - A Simple Approach: Regress Fund Returns on Benchmark, and Use Regression Equation to "Backcast" Fund Returns for Prior Months When the Fund Didn't Exist!! Works Better Than it Sounds!

Figure 9: Fund and Index Log Gross Returns

Fund Log Return

≈ 1.9 x Index Log
Return
1997-2001

----- Log Gross Fund Return

Log Gross Index Return

Guesstimate Monthly Fund Returns for Prior Years 1996-1992 By Plugging in Monthly Index Returns During 1996-1992.

Months: 1997 - 2001

Using the Longer History of a Highly Correlated Benchmark to Improve Fund Estimates

