Debt allocation:

To fix or float?

Svein-Arne Persson
Norwegian School of Economics

The 2nd Annual Conference on
Personal Risk Management

IFID, The Fields Institute, Canada, November 21, 2002.

Motivation:

Stylized facts (Norway):

- Most private homes financed by floating interest rates the last 20 years.
- Last 5 years major banks introduce fixed rate loans alternatives.
- Floating rate loans still dominate the market.
- Advice from experts flourish in media.

Example 1: State Education Loan Fund foundation of student financial aid in Norway, government run organization under the Ministry of Education. (www.lanekassen.no)

- interest rates are determined by the financial market
- customer has to choose either
- 3 year fixed (Oct 1, 2002: 7.4\%)
- 5 year fixed (Oct 1, 2002: 7.3\%) or
- floating interest rates (Jan 1, 2003: 8.1\%)
(may be changed quarterly)

Example 2: Postbanken
www.postbanken.no

- conditions depend on whether amount of Ioan is within 60% or 80% of market value.
- floating rates depend on whether loan amount is above or below NOK 500000.
- fixed rate loans of 3,5 or 10 years maturity

Conditions as of Oct 30, 2002.

	floating		fixed		
	$>.5 \mathrm{~m}$	$<.5 \mathrm{~m}$	3 y	5 y	10 y
$<60 \%$	8.1%	8.45%	7.45%	7.40%	7.40%
$<80 \%$	8.85%	9.15%	7.9%	7.85%	7.85%

Agenda:

- Introduction (done!)
- Literature
- Term structure model
- The agent's problem
- Static problem ("buy-and-hold")
- Dynamic problem (continuous rebalancing)
- Numerical comparison

Literature

Choice of term structure model

- We model stochastically fluctuating spot interest rates by an Ornstein-Uhlenbeck process

$$
d r_{t}=q\left(m-r_{t}\right) d t+v d B_{t},
$$

where v, q, and m are constants and the initial value $r_{s}=r$ (constant). First used in financial economics by Vasicek (1977).

OU-processes: $q=\ln (2), r=6 \%, m=4 \%, v=0.01$.

The Hull-White model

- $P_{s, \tau^{-}}$time s market price of a default free unit discount bond expiring at time τ.
- Vasicek (77):
$P_{s, \tau}=P(\lambda(\cdot))$,
$\lambda(\cdot)$ the market price of interest rate risk.
- Hull-White (90):
$P(\lambda(\cdot))=e^{-\int_{s}^{\tau} f_{s}(t) d t}$,
$f_{s}(t)$ time s forward rate for time t.
- $\lambda(\cdot)$ depends on
$-v, q, m$ (interest rate process)
$-f_{s}(t), \frac{\partial}{\partial t} f_{s}(t)$ (initial term structure)
$\lambda_{s}(t)=\frac{q m}{v}-\frac{1}{v}\left[q f_{s}(t)+\frac{\partial}{\partial t} f_{s}(t)\right]-\frac{v}{2 q}\left(1-e^{-2 q(t-s)}\right)$.

Set-up
(seminal Merton 1969, 1971 model)

Utility over terminal wealth (time T) only given by

$$
u(x)=\frac{1}{1-\rho} x^{1-\rho} .
$$

- relative risk aversion $\rho=\frac{-u^{\prime \prime}(x)}{u^{\prime}(x)} x$.
- $\rho>0$
- $\rho=1$ corresponds to $u(x)=\ln (x)$.

Set-up

- floating rate interest equal to spot rate r_{t}.
- fixed rate until time T follows from forward rates $f_{t}(s)$ as

$$
r_{s}^{x}=\frac{1}{T-s} \int_{s}^{T} f_{s}(t) d t
$$

- initial (time s) amount of debt $D_{s}=D$.
- deterministic time T wealth \bar{W} (collateral!).
- all interest payments take place at the horizon T.

Static problem
No intermediate rebalancing of debt ("buy-and -hold")

- Let $R=\int_{s}^{T} r_{t} d t$
- $R \sim N\left(\mu, \sigma^{2}\right)$ (Gaussian)
- α is the fraction of floating rate debt (amount of floating rate debt $=D^{L}=\alpha D$)
- Let L denote the wealth-to-debt ratio

$$
L=\frac{\bar{W} e^{-r_{s}^{x}(T-s)}-D}{D} .
$$

- Terminal wealth

$$
\begin{aligned}
W_{T} & =\bar{W}-\alpha D e^{R}-(1-\alpha) D e^{r_{s}^{x}(T-s)} \\
& =D L e^{r_{s}^{x}(T-s)}\left(1+\frac{\alpha}{L}\left(1-e^{R-r_{s}^{x}(T-s)}\right)\right.
\end{aligned}
$$

Investor's problem:

$$
\max _{\alpha} E\left[u\left(W_{T}\right)\right] .
$$

The first order condition of this problem is

$$
\begin{equation*}
E\left[u^{\prime}\left(W_{T}\right)\left(e^{r_{s}^{s}(T-s)}-e^{R}\right)\right]=0 . \tag{A}
\end{equation*}
$$

or using assumed CRRA utility,

$$
\begin{equation*}
E\left[\left(1+\frac{\alpha}{L}\left(1-e^{R-r_{s}^{r}(T-s)}\right)^{-\rho}\left(1-e^{R-r_{s}^{r}(T-s)}\right)\right]=0 .\right. \tag{B}
\end{equation*}
$$

Lower fixed rate bound for floating rate debt.

Study first order condition (A) for the case $\alpha=0$ (Huang and Litzenberger(1988)):

$$
r_{s}^{x}>r_{L}=\frac{1}{T-s}\left(\mu+\frac{1}{2} \sigma^{2}\right) .
$$

- If $r_{s}^{x}>r_{L}$ it is optimal to borrow to the FLOATING rate (include floating rate debt).
- The agent lends instead of borrows to the FLOATING rate if $r_{s}^{x} \leq r_{L}$.
- The condition is independent of specific utility function $u(x)$.

Upper fixed rate bound for fixed rate debt.

Study first order condition (B) for the case $\alpha=1$. Define $Z=\frac{\bar{W}}{D}-e^{R}$.

$$
r_{s}^{x}<r_{U}=\frac{1}{T-s}\left[\ln \left(\frac{\bar{W}}{D}-\frac{E\left[Z^{1-\rho}\right]}{E\left[Z^{-\rho}\right]}\right)\right]
$$

- If $r_{s}^{x}<r_{U}$ it is optimal to borrow at the fixed rate (inlude fixed rate debt).
- If $r_{s}^{x} \geq r_{U}$ it is optimal to lend instead of borrow to the fixed rate (buy bonds instead of issue bonds).
- Here r_{U} depends on the chosen CRRA utility function.
- Condition also depends on agent characteristics such as $\frac{\bar{W}}{D}$ and ρ.

For a risk neutral agent $r_{L}=r_{U}$.

```
Proof:
Insert \rho=0 in the previous expression for r}\mp@subsup{r}{U}{}\mathrm{ .
```

A risk neutral agent chooses either fixed rate loan or floating rate loan, never a combination of both.

First order condition (B)

$$
\begin{equation*}
E\left[\left(1+\frac{\alpha}{L}\left(1-e^{R-r_{s}^{r}(T-s)}\right)^{-\rho}\left(1-e^{R-r_{s}^{r}(T-s)}\right)\right]=0 .\right. \tag{B}
\end{equation*}
$$

- optimal $\alpha\left(\alpha^{*}\right)$ proportional to wealth-todebt ratio L
- constant relative risk aversion?

A reformulation.

- α^{*} depends on L in previous formulation
- express floating rate debt as a fraction β of market value of wealth
$\left(D^{L}=\beta W=\beta\left(\bar{W} e^{-r_{s}^{x}(T-s)}-D\right)\right)$
- $W_{T}=\left(\bar{W}-D e^{r_{s}^{x}(T-s)}\right)\left(1+\beta\left(1-e^{R-r_{s}^{x}(T-s)}\right)\right)$
- First order condition (C)

$$
E\left[\left(1+\beta\left(1-e^{R-r_{s}^{r}(T-s)}\right)^{-\rho}\left(1-e^{R-r_{s}^{s}(T-s)}\right)\right]=0 .\right.
$$

- NOT dependent on wealth-to-debt ratio L !
- connection between α^{*} and β^{*} :

$$
\alpha^{*}=\beta^{*} L
$$

The assumed parameter values of the spot interest rate with P dynamics

$$
\begin{gathered}
d r_{t}=q\left(m-r_{t}\right) d t+v d B_{t} \\
r=5 \%, q=15 \%, m=4.5 \%, v=2 \%
\end{gathered}
$$

Optimal β as a function of ρ

Table 1
Optimal $\beta\left(\beta^{*}\right)$ and expected utility.

	$\rho=1$	$\rho=2$	$\rho=4$
β^{*}	0.619	0.310	0.155
$E\left[U\left(W_{T}^{*}\right)\right]$	0.1505	-0.8605	-0.2125

The time horizon is $T=3$, and the fixed rate is $r_{0}^{x}=5 \%$.

Dynamic problem
Continuous (costless) rebalancing of debt

Methodology:

- Martingale formulation

Pliska(1986), Cox and Huang (1989) as extended Munk and Sørensen (2001)

- Stochastic control problem Merton (71)

Elements of the set-up

- Market value at time $t \leq T$ of time T wealth is

$$
W_{t}=\bar{W} P_{t, T}-D_{t} .
$$

- α_{t} fraction of FLOATING rate debt at time t
- Wealth process (α formulation)

$$
\begin{aligned}
d W_{t} & =\left[\left(r_{t}+b_{t, T}\right) W_{t}+\alpha_{t} b_{t, T} D_{t}\right] d t \\
& +a_{t, T}\left[W_{t}+\alpha_{t} D_{t}\right] d B_{t}
\end{aligned}
$$

- floating rate as a fraction β_{t} fraction of wealth W_{t} at time t
- Wealth process (β formulation)

$$
d W_{t}=\left[\left(r_{t}+b_{t, T}\left(1+\beta_{t}\right)\right] W_{t} d t+a_{t, T}\left(1+\beta_{t}\right) W_{t} d B_{t}\right.
$$

Solution (optimal indirect utility) of problem

$$
\begin{gathered}
J_{s}=\frac{1}{1-\rho}\left[\left(\frac{W_{s}}{P_{s, T}}\right)^{1-\rho} e^{\frac{1}{2} \frac{1-\rho}{\rho} V_{s, T}^{2}}\right] \text { for } \rho \neq 1 \\
J_{s}=\ln \left(\frac{W_{s}}{P_{s, T}}\right)+\frac{1}{2} V_{s, T}^{2} \text { for } \rho=1
\end{gathered}
$$

where

$$
V_{s, T}^{2}=\operatorname{Var}\left(\int_{s}^{T} r_{t} d t+\int_{s}^{T} \lambda_{s}(t) d B_{t} \mid \mathcal{F}_{s}\right) .
$$

- Martingale formulation: Munk and Sørensen (2001)
- Stochastic control: Brennan and Xia (2000)

Solution (optimal fractions of floating rate debt) of problem

$$
\begin{gathered}
\beta_{t}=\frac{1}{\rho}\left(\frac{\lambda_{s}(t)}{a_{t, T}}-1\right), \\
\alpha_{t}=\beta_{t} L_{t} .
\end{gathered}
$$

- Both J_{s} (through $V_{s, T}^{2}$) and β_{t} depends on the market price of interest rate risk which again depends on the initial forward rates.

4 examples of initial term structures

- constant λ (initially increasing)
- constant
- initially incresing
- initially decreasing

Comparison of optimal expected utility

J_{s}	$\rho=1$	$\rho=2$	$\rho=4$
static case	0.1505	-0.8605	-0.2125
constant λ	0.1515	-0.8594	-0.2121
constant $f_{s}(t)$	0.1527	-0.8584	-0.2117
increasing $f_{s}(t)$	0.1546	-0.8568	-0.2111
decreasing $f_{s}(t)$	0.1550	-0.8564	-0.2110

Optimal initial utility levels J_{s} compared with the results of the static model. The time horizon is $T=3$, the fixed rate is $r_{s}^{x}=5 \%$.

Percentage increase in certainty equivalent wealth ($\triangle C E$) compared with static case for the four dynamic cases.

$\triangle C E$ in $\%$	$\rho=1$	$\rho=2$	$\rho=4$
constant λ	0.10	0.13	0.06
constant $f_{s}(t)$	0.22	0.24	0.13
increasing $f_{s}(t)$	0.41	0.43	0.22
decreasing $f_{s}(t)$	0.45	0.48	0.24

Let \bar{u} denote the optimal utility level from the previous table. The certainty equivalent wealth is then calculated as $(\bar{u}(1-\rho))^{\frac{1}{1-\rho}}$ for $\rho \neq 1$ and as $e^{\bar{u}}$ for $\rho=1$.

Comparisons of initial fractions of floating rate debt

β_{s}	$\rho=1$	$\rho=2$	$\rho=4$
static case	0.619	0.310	0.155
constant λ	0.116	0.058	0.029
constant $f_{s}(t)$	-0.224	-0.112	-0.056
increasing $f_{s}(t)$	0.860	0.430	0.215
decreasing $f_{s}(t)$	-1.31	-0.654	-0.164

Optimal initial utility fractions of floating rate debt β_{s} compared with the results of the previous static model. The time horizon is $T=3$ and the fixed rate is $r_{s}^{x}=5 \%$.

Preliminary numerical examples indicate

- Debt allocation is an issue for the chosen parameters in our model.
- Surpricingly low increase in "welfare" in dynamic situation measured by certainty equivalent wealth compared to static situation.
- Initial optimal floating rate debt depends crucially on the initial slope of the initial term structure - this fact makes it difficult to undertake a direct comparison of the static and dynamic case.

Further research/extension

- Introduce (fixed) transaction cost in the spirit of Davis and Norman (1990), Korn (1998), Øksendal and Sulem (2000), Zakamouline (2002) makes set-up close to real world situations.
- introduce stochastic wealth/collateral (\bar{W})

