Debt allocation:

To fix or float?

Svein-Arne Persson

Norwegian School of Economics

The 2nd Annual Conference on Personal Risk Management

IFID, The Fields Institute, Canada, November 21, 2002.

Motivation:

Stylized facts (Norway):

- Most private homes financed by floating interest rates the last 20 years.
- Last 5 years major banks introduce *fixed* rate loans alternatives.
- Floating rate loans still dominate the market.
- Advice from experts flourish in media.

Example 1: State Education Loan Fund - foundation of student financial aid in Norway, government run organization under the Ministry of Education. (www.lanekassen.no)

- interest rates are determined by the financial market
- customer has to choose either
 - 3 year fixed (Oct 1, 2002: 7.4%)
 - 5 year fixed (Oct 1, 2002: 7.3%) or
 - floating interest rates (Jan 1, 2003: 8.1%)
 (may be changed quarterly)

Example 2: Postbanken

www.postbanken.no

- conditions depend on whether amount of loan is within 60% or 80% of market value.
- floating rates depend on whether loan amount is above or below NOK 500 000.
- fixed rate loans of 3, 5 or 10 years maturity

Conditions as of Oct 30, 2002.

	floating		fixed		
	>.5m	<.5m	3 у	5 y	10 y
< 60%	8.1%	8.45%	7.45%	7.40%	7.40%
< 80%	8.85%	9.15%	7.9%	7.85%	7.85%

Agenda:

- Introduction (done!)
- Literature
- Term structure model
- The agent's problem
- Static problem ("buy-and-hold")
- Dynamic problem (continuous rebalancing)
- Numerical comparison

Literature

Choice of term structure model

 We model stochastically fluctuating spot interest rates by an Ornstein-Uhlenbeck process

$$dr_t = q(m - r_t)dt + vdB_t,$$

where v, q, and m are constants and the initial value $r_s = r$ (constant). First used in financial economics by Vasicek (1977).

OU-processes: $q = \ln(2)$, r = 6%, m = 4%, v = 0.01.

The Hull-White model

- $P_{s,\tau}$ time s market price of a default free unit discount bond expiring at time τ .
- Vasicek (77): $P_{s,\tau} = P(\lambda(\cdot)),$ $\lambda(\cdot)$ the market price of interest rate risk.
- Hull-White (90): $P(\lambda(\cdot)) = e^{-\int_s^{\tau} f_s(t) dt},$ $f_s(t)$ time s forward rate for time t.
- $\lambda(\cdot)$ depends on - v, q, m (interest rate process) - $f_s(t)$, $\frac{\partial}{\partial t} f_s(t)$ (initial term structure) $\lambda_s(t) = \frac{qm}{v} - \frac{1}{v} \left[q f_s(t) + \frac{\partial}{\partial t} f_s(t) \right] - \frac{v}{2a} (1 - e^{-2q(t-s)}).$

Set-up (seminal Merton 1969, 1971 model)

Utility over terminal wealth (time T) only given by

$$u(x) = \frac{1}{1-\rho} x^{1-\rho}.$$

- relative risk aversion $\rho = \frac{-u''(x)}{u'(x)}x$.
- \bullet $\rho > 0$
- $\rho = 1$ corresponds to $u(x) = \ln(x)$.

Set-up

- ullet floating rate interest equal to spot rate r_t .
- fixed rate until time T follows from forward rates $f_t(s)$ as

$$r_s^x = \frac{1}{T-s} \int_s^T f_s(t) dt.$$

- initial (time s) amount of debt $D_s = D$.
- deterministic time T wealth \bar{W} (collateral!).
- all interest payments take place at the horizon T.

Static problem

No intermediate rebalancing of debt

("buy-and -hold")

- Let $R = \int_s^T r_t dt$
- $R \sim N(\mu, \sigma^2)$ (Gaussian)
- α is the fraction of floating rate debt (amount of floating rate debt = $D^L = \alpha D$)
- ullet Let L denote the wealth-to-debt ratio

$$L = \frac{\bar{W}e^{-r_s^x(T-s)} - D}{D}.$$

Terminal wealth

$$W_T = \bar{W} - \alpha D e^R - (1 - \alpha) D e^{r_s^x (T - s)}$$

= $D L e^{r_s^x (T - s)} (1 + \frac{\alpha}{L} (1 - e^{R - r_s^x (T - s)}).$

Investor's problem:

$$\max_{\alpha} E\left[u(W_T)\right]$$
.

The first order condition of this problem is

$$E\left[u'(W_T)(e^{r_s^x(T-s)} - e^R)\right] = 0.$$
 (A)

or using assumed CRRA utility,

$$E\left[(1 + \frac{\alpha}{L} (1 - e^{R - r_s^x(T - s)})^{-\rho} (1 - e^{R - r_s^x(T - s)}) \right] = 0.$$
 (B)

Lower fixed rate bound for floating rate debt.

Study first order condition (A) for the case $\alpha = 0$ (Huang and Litzenberger(1988)):

$$r_s^x > r_L = \frac{1}{T-s} (\mu + \frac{1}{2}\sigma^2).$$

- If $r_s^x > r_L$ it is optimal to borrow to the FLOATING rate (include floating rate debt).
- The agent *lends* instead of *borrows* to the FLOATING rate if $r_s^x \leq r_L$.
- The condition is independent of specific utility function u(x).

Upper fixed rate bound for fixed rate debt.

Study first order condition (B) for the case $\alpha=1$. Define $Z=\frac{\bar{W}}{D}-e^R$.

$$r_s^x < r_U = \frac{1}{T-s} \left[\ln \left(\frac{\bar{W}}{D} - \frac{E[Z^{1-\rho}]}{E[Z^{-\rho}]} \right) \right]$$

- If $r_s^x < r_U$ it is optimal to borrow at the fixed rate (inlude fixed rate debt).
- If $r_s^x \ge r_U$ it is optimal to *lend* instead of borrow to the fixed rate (buy bonds instead of issue bonds).
- ullet Here r_U depends on the chosen CRRA utility function.
- Condition also depends on agent characteristics such as $\frac{\bar{W}}{D}$ and ρ .

For a risk neutral agent $r_L = r_U$.

Proof:

Insert $\rho = 0$ in the previous expression for r_U .

A risk neutral agent chooses either fixed rate loan or floating rate loan, never a combination of both.

First order condition (B)

$$E\left[\left(1 + \frac{\alpha}{L}\left(1 - e^{R - r_s^x(T - s)}\right)^{-\rho}\left(1 - e^{R - r_s^x(T - s)}\right)\right] = 0.$$
 (B)

- ullet optimal lpha ($lpha^*$) proportional to wealth-to-debt ratio L
- constant relative risk aversion?

A reformulation.

- ullet α^* depends on L in previous formulation
- express floating rate debt as a fraction β of market value of wealth $(D^L = \beta W = \beta (\bar{W}e^{-r_s^x(T-s)} D))$

•
$$W_T = (\bar{W} - De^{r_s^x(T-s)})(1 + \beta(1 - e^{R-r_s^x(T-s)}))$$

• First order condition (C)

$$E\left[(1+\beta(1-e^{R-r_s^x(T-s)})^{-\rho}(1-e^{R-r_s^x(T-s)})\right]=0.$$

- NOT dependent on wealth-to-debt ratio L!
- connection between α^* and β^* :

$$\alpha^* = \beta^* L$$

The assumed parameter values of the spot interest rate with P dynamics

$$dr_t = q(m - r_t)dt + vdB_t$$

$$r = 5\%$$
, $q = 15\%$, $m = 4.5\%$, $v = 2\%$

Optimal β as a function of ρ

Table 1 Optimal β (β *) and expected utility.

	$\rho = 1$	$\rho = 2$	$\rho = 4$
eta^*	0.619	0.310	0.155
$E[U(W_T^*)]$	0.1505	-0.8605	-0.2125

The time horizon is T=3, and the fixed rate is $r_0^x=5\%$.

Dynamic problem
Continuous (costless) rebalancing of debt

Methodology:

- Martingale formulation
 Pliska(1986), Cox and Huang (1989) as extended Munk and Sørensen (2001)
- Stochastic control problem
 Merton (71)

Elements of the set-up

• Market value at time $t \leq T$ of time T wealth is

$$W_t = \bar{W}P_{t,T} - D_t.$$

- α_t fraction of FLOATING rate debt at time t
- Wealth process (α formulation)

$$dW_t = [(r_t + b_{t,T})W_t + \alpha_t b_{t,T} D_t]dt + a_{t,T}[W_t + \alpha_t D_t]dB_t$$

- ullet floating rate as a fraction eta_t fraction of wealth W_t at time t
- Wealth process (β formulation)

$$dW_t = [(r_t + b_{t,T}(1 + \beta_t)]W_t dt + a_{t,T}(1 + \beta_t)W_t dB_t$$

Solution (optimal indirect utility) of problem

$$J_s = \frac{1}{1-\rho} \left[\left(\frac{W_s}{P_{s,T}} \right)^{1-\rho} e^{\frac{1}{2}\frac{1-\rho}{\rho}V_{s,T}^2} \right] \text{ for } \rho \neq 1,$$

$$J_s = \ln \left(\frac{W_s}{P_{s,T}} \right) + \frac{1}{2}V_{s,T}^2 \text{ for } \rho = 1$$

where

$$V_{s,T}^2 = \operatorname{Var}\left(\int_s^T r_t dt + \int_s^T \lambda_s(t) dB_t | \mathcal{F}_s\right).$$

- Martingale formulation: Munk and Sørensen (2001)
- Stochastic control: Brennan and Xia (2000)

Solution (optimal fractions of floating rate debt) of problem

$$\beta_t = \frac{1}{\rho} \left(\frac{\lambda_s(t)}{a_{t,T}} - 1 \right),$$
$$\alpha_t = \beta_t L_t.$$

• Both J_s (through $V_{s,T}^2$) and β_t depends on the market price of interest rate risk which again depends on the initial forward rates.

4 examples of initial term structures

- constant λ (initially increasing)
- constant
- initially incresing
- initially decreasing

Comparison of optimal expected utility

J_s	$\rho = 1$	$\rho = 2$	$\rho = 4$
static case	0.1505	-0.8605	-0.2125
constant λ	0.1515	-0.8594	-0.2121
constant $f_s(t)$	0.1527	-0.8584	-0.2117
increasing $f_s(t)$	0.1546	-0.8568	-0.2111
decreasing $f_s(t)$	0.1550	-0.8564	-0.2110

Optimal initial utility levels J_s compared with the results of the static model. The time horizon is T=3, the fixed rate is $r_s^x=5\%$.

Percentage increase in certainty equivalent wealth (ΔCE) compared with static case for the four dynamic cases.

ΔCE in %	$\rho = 1$	$\rho = 2$	$\rho = 4$
constant λ	0.10	0.13	0.06
constant $f_s(t)$	0.22	0.24	0.13
increasing $f_s(t)$	0.41	0.43	0.22
decreasing $f_s(t)$	0.45	0.48	0.24

Let \bar{u} denote the optimal utility level from the previous table. The certainty equivalent wealth is then calculated as $(\bar{u}(1-\rho))^{\frac{1}{1-\rho}}$ for $\rho \neq 1$ and as $e^{\bar{u}}$ for $\rho = 1$.

Comparisons of initial fractions of floating rate debt

eta_s	$\rho = 1$	$\rho = 2$	$\rho = 4$
static case	0.619	0.310	0.155
constant λ	0.116	0.058	0.029
constant $f_s(t)$	-0.224	-0.112	-0.056
increasing $f_s(t)$	0.860	0.430	0.215
decreasing $f_s(t)$	-1.31	-0.654	-0.164

Optimal initial utility fractions of floating rate debt β_s compared with the results of the previous static model. The time horizon is T=3 and the fixed rate is $r_s^x=5\%$.

Preliminary numerical examples indicate

- Debt allocation is an issue for the chosen parameters in our model.
- Surpricingly low increase in "welfare" in dynamic situation measured by certainty equivalent wealth compared to static situation.
- Initial optimal floating rate debt depends crucially on the initial slope of the initial term structure – this fact makes it difficult to undertake a direct comparison of the static and dynamic case.

Further research/extension

- Introduce (fixed) transaction cost in the spirit of Davis and Norman (1990), Korn (1998), Øksendal and Sulem (2000), Zakamouline (2002) makes set-up close to real world situations.
- ullet introduce stochastic wealth/collateral (\bar{W})