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Abstract. We develop a symbol calculus for bimodule maps over a
masa, that allows us to study bounded idempotents.

1. Introduction

Let D ⊆ B(H) be a masa acting on a separable Hilbert space H and let
P : B(H) → B(H) be an idempotent D-bimodule map.

Let M = P (B(H)) be its range, and assume that M is w*-closed. The
purpose of this note is to investigate the structure of M.

In case P is contractive, Solel [So] conjectures that M must be a Ternary
Ring of Operators (TRO), i.e. must satisfy MM∗M ⊆ M.

In case P is assumed to be w*-continuous, the conjecture has been proved
by Solel [So]. We give a new proof of this, and in fact obtain the stronger
conclusion that M must be the w*-closed sum of “full corners”, M =∑

n B(Hn,Kn) where {Hn} are pairwise orthogonal subspaces of H, and
ditto for {Kn}.

In fact, representing D as the multiplication masa of a standard Borel
space (X, µ), we show that the ω-support (see [EKS]) of the range M of a
w*-continuous idempotent (whether contractive or not) is ω-open (as well as
ω-closed). It follows [EKS] that the reflexive cover Ref(M) of M is strongly
reflexive.

We begin by examining the case when H = `2 and D = `∞ in some detail.
In this case every D-bimodule map Φ is well-known to be given by Schur
multiplication against a fixed matrix A = (ai,j), that is, Φ(X) = A ∗ X =
(ai,jxi,j). We denote this map by Φ = SA.

Note that Φ ◦ Φ = Φ is clearly equivalent to a2
i,j = ai,j and hence each

entry of A must be either a 0 or 1. Thus every idempotent Φ can be identified
in a one-to-one fashion with a subset E ⊆ N×N where E = {(i, j) : ai,j = 1}
and we write A = χE , where we regard the matrix A as a function of two
variables.

The problem of determining ranges of bounded bimodule projections, be-
comes one of determining which subsets give rise to bounded bimodule pro-
jections.
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When the bimodule projection has norm less than 2/
√

3, we present an
elementary proof, based on an elementary “3 of 4” lemma, that gives a de-
scription of these sets. Our argument shows that, in contrast with ordinary
projections, every bimodule projection of norm less than 2/

√
3 is actually

of norm 1. Thus, the set of possible norms of bimodule projections is not a
connected subset of the reals.

Very little is known about the structure of sets such that Φ is only a
bounded projection, but we give, hopefully, a little insight into this problem.

In the third section, we develop a symbol calculus for weak*-continuous
bimodule maps over more general masas. One of the main advantages of
our approach is that the symbol calculus allows proofs given in the discrete
case to carry over to arbitrary masa’s.

Note that if P is a contractive idempotent (hence ‖P‖ = 1) and its range
is a D-bimodule, then P is automatically a D-bimodule map ([So]).

The authors would like to thank Ken Davidson, Gilles Pisier and Ivan
Todorov for various observations that have improved our results.

2. The Discrete Case

In this section we develop the case where the masa is totally atomic, so
our Hilbert space may be represented as `2 and the masa as `∞ acting in
the usual fashion as diagonal matrices. Identifying `2 = L2(N, µ), leads to
the identification of `∞ = L∞(N, µ) acting as multiplication operators on
this space of functions.

Definition 1. Let X and Y be sets and let E ⊆ X ×Y . We say that E has
the 3 of 4 property provided that given any distinct pair of points x1 6= x2

in X and any pair of distinct points y1 6= y2 in Y , whenever 3 of the 4
ordered pairs (xi, yj) belong to E then the fourth ordered pair belongs to E
also.

Lemma 2. Let X and Y be sets and let E ⊆ X × Y . If E has the 3 of
4 property, then there exists an index set T , disjoint subsets {Xt}t∈T of X,
and disjoint subsets {Yt}t∈T of Y such that

E = ∪t∈T Xt × Yt.

Proof. Define a relation on X by x1Rx2 if and only if there exists y ∈ Y
such that (x1, y) and (x2, y) are both in E. The 3 of 4 property ensures that
R is transitive and hence is an equivalence relation on the subset X0 = {x ∈
X : (x, y) ∈ E for some y ∈ Y } of X. Let {Xt}t∈T denote the collection of
equivalence classes of X0.

Define Yt = {y ∈ Y : (x, y) ∈ E for some x ∈ Xt}. Again the 3 of 4
property ensures that the sets Yt are disjoint with union equal to

Y0 = {y ∈ Y : (x, y) ∈ E for some x ∈ X}.
One final use of the 3 of 4 property shows that E = ∪t∈T Xt × Yt. �
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Lemma 3. Let A =

(
1 1
0 1

)
and let SA : M2 → M2 denote the map given

as Schur product by A, then ‖SA‖ = 2/
√

3.

Proof. Since the unitaries are the extreme points of the unit ball of M2, it

is easily seen that ‖SA‖ = supθ

∥∥∥∥
(

cos θ sin θ
0 cos θ

)∥∥∥∥ and the result follows by

computing this supremum. �

Theorem 4. Let P : B(`2) → B(`2) be an `∞-bimodule map that is idempo-
tent, let M = P (B(`2)) denote the range of P and assume that ‖P‖ < 2/

√
3.

Then:

(i) P = SχE
where E = ∪Im × Jm, with {Im} and {Jm} countable

collections of disjoint subsets of N,
(ii) M =

∑
m χIm

B(`2)χJm
and MM∗M ⊆ M,

(iii) ‖P‖ = 1.

Proof. The fact that P = SχE
for some set E ⊆ N × N was noted in the

introduction. Choose any x1 6= x2 and y1 6= y2 in N and consider the com-
pression of P as a map from the span of {ex1

, ex2
} to the span of {ey1

, ey2
}.

Since ‖P‖ < 2/
√

3, by the above lemma E will have the 3 of 4 property
and hence by the first lemma be of the form given in (i). It is now obvious
that M will have the form claimed in (ii). The second assertion in (ii) is
immediate from this.

Alternatively, to see the second assertion in (ii), note that it is enough
to assume that the matrix units Ei,j , Ek,l and Em,n are in M and prove
that Ei,jE

∗
k,lEm,n is in M. But this product will be 0 unless j = l and

k = m in which case the product is Ei,n. However, in this case we have that
(i, j), (k, j), (k, n) belong to E and so again by the 3 of 4 property (i, n) is
in E and so Ei,n ∈ M.

Finally, to prove (iii), let {em} denote the usual basis of `2, set xi = em

when i ∈ Im, set yj = em when j ∈ Jm and note that χE(i, j) = 〈xi, yj〉.
Thus, ‖P‖ ≤ 1 by the theorem characterizing the norms of Schur product
maps, see for example [Pa]. �

It is well known that the range of a completely contractive projection is
completely isometrically isomorphic to a TRO on some Hilbert space H.
This result induces a triple product on the range, but it is generally not the
triple product given by the original representation of the range as a subspace
of B(H). Note that by (ii), we have that the range of P is a TRO in the
original triple product, i.e., that the range is a sub-TRO of B(`2).

Remark 5. By the above result we see that the set of possible norms of
bimodule projections does not contain the interval from 1 to 2/

√
3. This

makes the structure of this set somewhat intriguing. Davidson has observed
that the set of possible norms is closed under product and under the taking
of suprema. By a result of Bhatia, Choi and Davis [BCD], the number 2 is
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one of the limit points of this set. Other than these facts, not much seems
to be known about this set.

If we let ∆ = {E ⊆ N × N : SχE
is bounded }, then by the results

characterizing the norms of Schur product maps, it is easily seen that E ∈ ∆
if and only if there exist bounded sequences of vectors, {xi} and {yj}, such
that χE(i, j) = 〈xi, yj〉, but this characterization seems to be of little help
in obtaining other conditions that characterize the sets in ∆.

It is not hard to show that ∆ is an algebra of sets and so contains the
algebra generated by the sets given by the above theorem. It is not currently
known whether ∆ equals the latter algebra.

3. A Functional Calculus

In the discrete case, every bounded bimodule map is given as s Schur
product map and so is automatically weak*-continuous, but this is not the
case in general. In this section we develop a functional calculus in the
non-discrete case for weak*-continuous bimodule maps that allows us to
treat these exactly like Shun product maps and consequently obtain exact
analogues of the results of the previous section.

This functional calculus is a bit different from the one considered by
Peller [Pe], and appears to have recently been discovered independently by
Shulman and Kissin [KS].

Let D ⊆ B(H) be a masa acting on a separable Hilbert space H and
let Φ : B(H) → B(H) be a w*-continuous D-bimodule map. Since Φ is a
bounded D-bimodule map, a result of R. Smith [Smi] (see also [DP]) shows
that Φ must be completely bounded, and in fact ‖Φ‖cb = ‖Φ‖.

Now Haagerup [Haa] shows that a w*-continuous completely bounded
D-bimodule map such as Φ must be of the form

Φ(T ) =

∞∑

n=1

FnTGn (T ∈ B(H))

for suitable Fn, Gn ∈ D satisfying ‖∑FnF ∗
n‖ < ∞ and ‖∑G∗

nGn‖ < ∞.
Represent D as the multiplication masa of a standard (finite) Borel space

(X, µ) acting on H = L2(X, µ). A standard null-set argument shows that
we may choose two families {fn}, {gn} of Borel functions with Fn = Mfn

and Gn = Mgn
for each n, and such that the series

∑ |fn(t)|2 and
∑ |gn(t)|2

converge for all t ∈ X boundedly and in L2 norm.
It follows that the series

φ(s, t) =
∑

n

fn(s)gn(t)

converges pointwise everywhere to a Borel function.

Conversely, let f = (f1, f2, . . .) and g = (g1, g2, . . .) be (essentially) bounded
weakly Borel measurable functions from X into `2. Since `2 is separable,
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weak Borel measurability and strong Borel measurability are equivalent.
Thus (i) each fn is an essentially bounded complex-valued function and (ii)

sup
s∈X

‖f(s)‖2
2 = sup

s∈X

∑

n

|fn(s)|2 ≡ Bf < ∞

and Bg ≡ sups∈X ‖g(s)‖2
2 < ∞. It follows that

‖f‖2 ≡
∫

‖f(s)‖2
2dµ(s) =

∑

n

∫
|fn(s)|2dµ(s) < ∞

and ditto for g, and hence the function

φ(s, t) = 〈f(s), ḡ(t)〉 =
∑

n

fn(s)gn(t)

defines an element of the projective tensor product L2(X, µ)⊗̂L2(X, µ). Note
that the series converges pointwise absolutely and boundedly and also in the
projective norm. Thus the function φ is Borel on X × X and (essentially)
bounded. Denoting by Fn (resp. Gn) the multiplication operator Mfn

(resp.
Mgn

) acting on H = L2(X, µ) we observe that for every T ∈ B(H) the series

∑

n

FnTGn

converges in the w*-topology. Indeed, denoting by ΦN (T ) the partial sum∑N
n=1 FnTGn, we have, for all ξ, η ∈ H and N > M ,

|〈(ΦN (T ) − ΦM (T ))ξ, η〉|2 =

∣∣∣∣∣

N∑

n=M+1

〈TGNξ, F ∗
nη〉
∣∣∣∣∣

2

≤
(

N∑

n=M+1

‖TGnξ‖2

)(
N∑

n=M+1

‖F ∗
nη‖2

)
≤ ‖T‖2

N∑

n=M+1

‖Gnξ‖2

N∑

n=M+1

‖F ∗
nη‖2

= ‖T‖2

(
N∑

n=M+1

∫
|gn(s)|2|ξ(s)|2dµ(s)

)(
N∑

n=M+1

∫
|fn(t)|2|η(t)|2dµ(t)

)

≤ ‖T‖2

(∫ N∑

n=M+1

|gn(s)|2|ξ(s)|2dµ(s)

)
Bf‖η‖2

and so

‖ΦN (T )ξ − ΦM (T )ξ‖2 ≤ ‖T‖2

(∫ N∑

n=M+1

|gn(s)|2|ξ(s)|2dµ(s)

)
Bf .

But since the series
∫ ∑

n |gn(s)|2|ξ(s)|2dµ(s) converges by monotone (or by
dominated) convergence, it follows that the sequence (ΦN (T )ξ) is Cauchy
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in L2, hence (ΦN (T )) converges strongly. But

‖ΦN (T )‖ =

∥∥∥∥∥

N∑

n=1

FnTGn

∥∥∥∥∥ ≤ ‖T‖
∥∥∥∥∥

N∑

n=1

FnF ∗
n

∥∥∥∥∥

1

2

∥∥∥∥∥

N∑

n=1

G∗
nGn

∥∥∥∥∥

1

2

= ‖T‖ sup
s

(
N∑

n=1

|fn(s)|2
) 1

2

sup
t

(
N∑

n=1

|gn(t)|2
) 1

2

≤ ‖T‖
√

BfBg

so the sequence (ΦN (T )) is bounded, hence the convergence is actually ul-
trastrong. Thus the series

Φφ(T ) =
∑

n

FnTGn

defines a bounded operator and furthermore the inequality

‖Φφ(T )‖ ≤ ‖T‖
√

BfBg

shows that the map

Φφ : B(H) → B(H) : T →
∑

n

FnTGn

is continuous with norm (actually cb norm) at most
√

BfBg. Since each
ΦN is a D-bimodule map, so is Φφ. Also, each ΦN is clearly w*-continuous.
We claim that Φφ is also w*-continuous. For this, it suffices to show that it
is weak operator continuous on the unit ball B(H)1 of B(H). But if T is a
contraction, then for all ξ, η ∈ H, we have

|〈(Φφ(T ) − ΦN (T ))ξ, η〉| ≤ ‖T‖
(∫ ∞∑

n=N+1

|gn(s)|2|ξ(s)|2dµ(s)

)1/2

‖η‖

≤
(∫ ∞∑

n=N+1

|gn(s)|2|ξ(s)|2dµ(s)

)1/2

‖η‖.

This shows that the function T → 〈Φφ(T )ξ, η〉 is the uniform limit on B(H)1
of the weak operator continuous functions T → 〈ΦN (T )ξ, η〉 and so is itself
weak operator continuous.

Note that the map Φφ acts as a multiplication operator on kernels of
Hilbert Schmidt operators:

Proposition 6. Let φ(s, t) = 〈f(s), ḡ(t)〉 where f and g are (essentially)
bounded (weakly) Borel measurable functions from X into `2, and let Φφ :
B(H) → B(H) be as above. The map Φφ leaves the space of Hilbert Schmidt
operators invariant. If T ∈ B(H) is a Hilbert Schmidt operator with kernel
k ∈ L2(X × X), then Φφ(T ) has kernel Mφ(k) = φk. Thus Φφ acts on
L2(X × X) as multiplication by φ.
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Proof. Let T = Tk be Hilbert Schmidt operator with kernel k. For ξ, η ∈ H
we have

〈Φφ(Tk)ξ, η〉 = 〈
∞∑

n=1

FnTkGnξ, η〉 =

∞∑

n=1

〈TkGnξ, F ∗
nη〉

=
∞∑

n=1

∫∫
k(x, y)gn(y)ξ(y)fn(x)η(x)dµ(y)dµ(x)

=

∫∫ ∞∑

n=1

fn(x)gn(y)k(x, y)ξ(y)η(x)dµ(y)dµ(x)

=

∫∫
φ(x, y)k(x, y)ξ(y)η(x)dµ(y)dµ(x)

= 〈Tφkξ, η〉
and so Φφ(Tk) = Tφk. �

Theorem 7. Let φ(s, t) = 〈f(s), ḡ(t)〉 where f and g are (essentially)
bounded (weakly) Borel measurable functions from X into `2, and let Φφ :
B(H) → B(H) be as above. The following are equivalent:

(1) φ = 0 m.a.e.
(2) φ = 0 a.e.
(3) Φφ = 0.

Proof. If the set
R = {(s, t) ∈ X × X : φ(s, t) 6= 0}

is contained in a set of the form N ×X ∪X ×N , where N ⊆ X is null, then
of course the product measure of R is 0. Thus (1) implies (2).

To show that (2) implies (3), observe that if T = Tk is a Hilbert-Schmidt
operator with (square-integrable) kernel k, then by Proposition 6 Φφ(Tk) =
Tφk.

It follows that if φ = 0 a.e. then Φφ(Tk) = 0 for any Hilbert-Schmidt
operator Tk. Since Φφ is w*-continuous, we obtain Φφ = 0. Conversely if
Φφ = 0 then φ = 0 a.e.

It remains to prove that if the set R is null, then it must be marginally
null. For this, first observe that R is (marginally equivalent to) a countable
union of Borel rectangles. We use an argument of Arveson [Arv]: The set

{(ξ, η) ∈ `2 × `2 : 〈ξ, η〉 6= 0}
is open in `2 × `2, and hence is a countable union ∪nUn × Vn of open rect-
angles. Letting An = {s ∈ X : f(s) ∈ Un} and Bn = {t ∈ X : g(t) ∈ Vn}
we see that, since f, g : X → `2 are Borel functions, the sets An and Bn are
Borel and

R = {(s, t) : 〈f(s), g(t)〉 6= 0} =
⋃

n

{(s, t) : 〈f(s), g(t)〉 ∈ Un×Vn} =
⋃

n

An×Bn

as claimed. Thus if the product measure of R is 0 we must have µ(An)µ(Bn) =
0 for all n ∈ N. If N1 = ∪{An : µ(Bn) 6= 0} and N2 = ∪{Bn : µ(An) 6= 0}
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then µ(N1) = µ(N2) = 0 and

R ⊆ N1 × X ∪ X × N2

which completes the proof. �

Definition 8. We let NCBD(B(H)) denote the algebra of weak*-continuous
D-bimodule maps from B(H) into itself. Given a weak*-continuous D-
bimodule map Φ as above we call the m.a.e. equivalence class of the function
φ(s, t) obtained above the symbol of Φ and denote it by Γ(Φ).

Corollary 9. Let D be represented as the multiplication masa on a standard
Borel space (X, µ), let Bmae(X × X) denote the algebra of bounded Borel
functions on X × X modulo the marginally null functions. Then the map
Γ : NCBD(B(H)) → Bmae(X × X) is a one-to-one homomorphism onto
the subalgebra of functions that can be represented in the form φ(s, t) =
〈f(s), g(t)〉 for any bounded Borel measurable functions f, g from X into a
separable Hilbert space.

We call the map Γ the functional calculus for weak*-continuous D-
bimodule maps.

Armed with the functional calculus, we can readily generalize the theorem
of the previous section.

Theorem 10. Let P : B(H) → B(H) be a D-bimodule map that is idem-
potent and weak*-continuous, let M = P (B(H)) denote the range of P and
assume that ‖P‖ < 2/

√
3. Then:

(1) Γ(P ) = χE where E = ∪Im × Jm, with {Im} and {Jm} countable
collections of disjoint Borel subsets of X,

(2) M =
∑

m χIm
B(L2)χJm

and MM∗M ⊆ M,
(3) ‖P‖ = 1.

Proof. Let Γ(P ) = φ, since P ◦ P = P , by the functional calculus, φ2 = φ
marginally almost everywhere. Thus, we can pick a Borel subset X1 of X
with µ(X ∩ Xc

1) = 0 such that φ2 = φ on X1 × X1. Hence, there is a Borel
subset E of X1 × X1 such that φ = χE as functions on X1 × X1.

Thus, we may write χE(s, t) = 〈f(s), g(t)〉 where f, g are functions into a
separable Hilbert space with ‖f(s)‖‖g(t)‖ < 2/

√
3 for all s, t.

By Lemma 3, if for any s1 6= s2 and t1 6= t2, we have that 3 of the 4 values
〈f(si), g(tj)〉 are 1, then the fourth value must also be 1.

Hence the set E satisfies the 3 of 4 property and so it must be a union of
disjoint rectangles as in Lemma 2. Say, E = ∪t∈T It × Jt.

It remains to be shown that the indexing set T for the union is only
countable and that each of the sets It and Jt are Borel. As in the proof
of Theorem 7, the set E = {(s, t) ∈ X1 × X1 : φ(s, t) 6= 0} can be written
as a countable union of Borel rectangles, say E = ∪nAn × Bn. Again, by
the equivalence relation used to define the sets It and Jt, if any point in a
rectangle An×Bn is contained in It×Jt then An×Bn ⊆ It×Jt. Hence, each
set It × Jt is the union of the at most countably many Borel rectangles that
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are contained in it and consequently is itself a Borel rectangle. Moreover,
the set T can be placed in a one-to-one correspondence with a partition of
the integers, and hence is countable.

The remainder of the proof proceeds as in the proof of Theorem 4. �

As in the discrete case we have that M is a sub-TRO of B(L2), a result
obtained by Solel [So].

Just as in the discrete case, very little is known about bimodule projec-
tions of greater norm.

More importantly, very little is known about contractive bimodule projec-
tions that are not weak*-continuous. Such projections do exist, for example
projections onto the masa D exist and when D is not discrete, these can-
not be weak*-continuous. Solel [So] conjectures that the range M of any
contractive D-bimodule projection satisfies MM∗M ⊆ M.

We now turn our attention to further properties of the symbol calculus
and of bounded weak*-continuous idempotents.

Recall [EKS] that a subset E ⊆ X × X is said to be ω-open if it differs
from a countable union of Borel rectangles by a marginally null set, and is
ω-closed if its complement is ω-open. Thus the set E in Theorem 10 is
ω-open. The following Proposition strengthens this result and provides an
alternative approach:

Proposition 11. Let P ∈ NCBD(B(H)) be an idempotent with symbol
Γ(P ) = χ. Then there exists an ω-open and ω-closed set A ⊆ X × X such
that χ = χA marginally almost everywhere.

Proof. Notice first that, in the terminology of [EKS], any element φ of the
projective tensor product L2(X)⊗̂L2(X) is ω-continuous, that is, φ−1(U) is
ω-open in X × X for any open set U ⊆ C [EKS, Theorem 6.5].

Since P is idempotent, so is its induced operator Mχ on L2(X × X) (see
Proposition 6). It follows that χ2 = χ almost everywhere, i.e. the set

B = {(x, y) : χ2(x, y) − χ(x, y) 6= 0}
has product measure zero. On the other hand, since χ ∈ L2(X)⊗̂L2(X), the
function χ is ω-continuous hence so is χ2 − χ. Thus B must be ω-open, in
other words marginally equivalent to a countable union of rectangles. The
fact that B has product measure zero now implies, as noted earlier, that it
is actually marginally null. Replacing X by a suitable Borel subset X1 such
that µ(X ∩Xc

1) = 0, we may assume that B = ∅, i.e. that χ2(x, y) = χ(x, y)
for all (x, y) ∈ X ×X. Thus letting A = χ−1({1}) we see that A is ω-closed
(since χ is ω-continuous); but Ac = χ−1({0}) is also ω-closed. �

It is shown in [EKS] that, given any space S of operators on L2(X), there
exists an ω-closed set Ω, minimal up to marginally null sets, that supports
all elements of S, in the sense that if a Borel rectangle α × β doesn’t meet
Ω then MβSMα = {0} (here Mβ ∈ B(L2(X)) denotes the projection onto
L2(β)). This set is called the ω-support of S.
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Proposition 12. Let P ∈ NCBD(B(H)) be an idempotent with symbol
Γ(P ) = χA. Then the set A is (marginally equivalent to) the ω-support of
M = P (B(H)).

Proof. It is to be shown that a Borel rectangle α × β has marginally null
intersection with A if and only if MβMMα = {0}. Note that the rela-
tion MβMMα = {0} is equivalent to MβP (T )Mα = 0 for all T ∈ B(H).
But, since the map T → MβP (T )Mα is w*-continuous, this is equivalent
to MβP (T )Mα = 0 for all Hilbert Schmidt T = Tk. By Proposition 6
MβP (Tk)Mα = MβTχkMα = Th, where h = χα×βχAk. Thus the relation
MβP (T )Mα = 0 holds for all Hilbert Schmidt T = Tk if and only if the set
(α×β)∩A has product measure zero. But since this set is ω-open, as shown
in the proof of the last proposition this can only happen when (α × β) ∩ A
is marginally null. �

Since A is ω-open, it follows [EKS, Theorem 6.11] that the reflexive cover
Ref(M) is in fact strongly reflexive, and is the strong closure of the linear
span of the finite rank operators supported in A. In case P is actually
contractive, this of course follows immediately from the fact that the range
of P is a direct sum of full corners (Theorem 10).
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