Normalizers,

Ternary Rings,

and All That

A. Katavolos

(with Ivan Todorov

and Vern Paulsen)

Normalizers

Let $A \subseteq \mathcal{B}(\mathcal{H})$ be a von Neumann algebra. Recall $T \in \mathcal{B}(\mathcal{H})$ normalizes A (: $T \in \mathcal{N}(A)$) when $T^*AT \subseteq A$ and $TAT^* \subseteq A$. Generalize:

Given $A \subseteq \mathcal{B}(\mathcal{H}_1)$ and $\mathcal{B} \subseteq \mathcal{B}(\mathcal{H}_2)$ reflexive algebras (later), say $T \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$ normalizes \mathcal{B} into A (: $T \in \mathcal{N}(\mathcal{B}, A)$) when

$$T^*\mathcal{B}T\subseteq\mathcal{A}$$
 and $T\mathcal{A}T^*\subseteq\mathcal{B}$.

When T only satisfies $T^*\mathcal{B}T\subseteq \mathcal{A}$ say T **semi-normalizes**:

$$\mathcal{SN}(\mathcal{B},\mathcal{A}) = \{ T \in \mathcal{B}(\mathcal{H}_1,\mathcal{H}_2) : T^*\mathcal{B}T \subseteq \mathcal{A} \}.$$

Reflexivity

von Neumann algebras:

$$\mathcal{A} = \{ A \in \mathcal{B}(\mathcal{H}) : AL = LA \ \forall L \in \mathcal{L} \}$$

(here \mathcal{L} =projections in \mathcal{A}').

reflexive algebras:

$$\mathcal{A} = \{ A \in \mathcal{B}(\mathcal{H}) : AL = LAL \ \forall L \in \mathcal{L} \}$$

(here $\mathcal{L} = \text{Lat}\mathcal{A} = \mathcal{A}$ -invariant projections).

reflexive subspaces:

$$\mathcal{M} = \{ T \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2) : TL = \phi(L)TL \ \forall L \}.$$

Local linear structure of SN(B, A)

 \mathcal{A}, \mathcal{B} reflexive algebras. For $T \in \mathcal{SN}(\mathcal{B}, \mathcal{A})$ let

$$\phi_T: \mathsf{Lat}\mathcal{A} \to \mathsf{Lat}\mathcal{B} \qquad L \to [\mathcal{B}TL]$$

show $TL = \phi_T(L)T$ for all $L \in Lat A$.

Conversely, given $\phi: \mathsf{Lat}\mathcal{A} \to \mathsf{Lat}\mathcal{B}$ (respecting zero and sups) construct

$$\mathcal{U}_{\phi} = \{ S \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2) : SL = \phi(L)S \ \forall L \in \mathsf{Lat}\mathcal{A} \}.$$

Show $\mathcal{U}_{\phi} \subseteq \mathcal{SN}(\mathcal{B}, \mathcal{A})$. But $T \in \mathcal{U}_{\phi_T}$, hence

$$SN(B,A) = \bigcup_{\phi} U_{\phi}.$$

- \mathcal{U}_{ϕ} is lacktriangle A reflexive linear space
 - Ternary: $T, R, S \in \mathcal{U}_{\phi} \Rightarrow TR^*S \in \mathcal{U}_{\phi}$.
 - Saturated: $\mathcal{B}_d\mathcal{U}_\phi\mathcal{A}_d\subseteq\mathcal{U}_\phi$ (where $\mathcal{B}_d = \mathcal{B} \cap \mathcal{B}^*$).

More generally:

Any linear space $\mathcal{U} \subseteq \mathcal{SN}(\mathcal{B}, \mathcal{A})$ is contained in a ternary space $\mathcal{U}_t \subseteq \mathcal{SN}(\mathcal{B}, \mathcal{A})$ which is reflexive and a bimodule over the diagonals $(\mathcal{B}_d\mathcal{U}_t\mathcal{A}_d \subseteq \mathcal{U}_t)$.

Reflexive Ternary Spaces

• A ternary linear space \mathcal{U} is reflexive iff w*-closed [vN bicommutant] iff it a corner of a vN algebra.

$$\left[\begin{array}{cc} (\mathcal{U}\mathcal{U}^*)'' & \mathcal{U} \\ \mathcal{U}^* & (\mathcal{U}^*\mathcal{U})'' \end{array}\right]$$

 $(\mathsf{NB}\colon \mathcal{U}\subseteq \mathcal{N}([\mathcal{U}\mathcal{U}^*],[\mathcal{U}^*\mathcal{U}]))$

- $\mathcal{SN}(\mathcal{B}, \mathcal{A})$ is generated by its partial isometries: Each $T \in \mathcal{SN}(\mathcal{B}, \mathcal{A})$ is the norm closed linear span of partial isometries in $\mathcal{SN}(\mathcal{B}, \mathcal{A})$.
- A reflexive ternary linear space U generated by its rank one operators is a sum of full corners:

$$\mathcal{U} = \bigoplus_{n} \mathcal{B}(\mathcal{H}_n, \mathcal{K}_n)$$

hence is a bimodule over totally atomic masas.

Masa bimodules

 (X_i, μ_i) : standard Borel spaces, $\mathcal{H}_i = L^2(X_i, \mu_i)$. If $\Omega \subseteq X_1 \times X_2$, say $T: \mathcal{H}_1 \to \mathcal{H}_2$ is supported by Ω if

 $P(\beta)TP(\alpha) = 0 \ \forall \alpha, \beta \ \text{Borel s.t.} \ (\alpha \times \beta) \cap \Omega = \emptyset.$ (Arveson).

 $\mathcal{M}_{max}(\Omega)=\{T:\mathcal{H}_1\to\mathcal{H}_2 \text{ supported by }\Omega\}$ a reflexive bimodule over the multiplication massas. Conversely

Every reflexive masa bimodule is of this form. (Erdos, K., Shulman)

(for an Ω which -if chosen to be " ω -closed"- is unique up to marginal equivalence, i.e. up to a set of the form $X_1 \times N_2 \cup N_1 \times X_2$, $\mu_i(N_i) = 0$).

Ternary masa bimodules

When is $\mathcal{U} = \mathcal{M}_{max}(\Omega)$ ternary? Precisely when

$$\Omega \simeq \{(s,t) \in X_1 \times X_2 : f_1(s) = f_2(t)\}$$

for appropriate Borel functions $f_i: X_i \to [0,1]$.

(If for example the algebra $[\mathcal{U}\mathcal{U}^*]$ is abelian, then may write

$$\Omega \underset{\overline{m}}{\sim} \{(s,t) : f(s) = t\}.)$$

Also, $\mathcal{U}=\mathcal{M}_{\text{max}}(\Omega)$ is ternary iff Ω has the $3\Rightarrow 4$ property: For $x_i\in X_1,y_i\in X_2,x_1\neq x_2,y_1\neq y_2$, if 3 pairs (x_i,y_i) are in Ω , then all 4 are.

When is \mathcal{U}_{ϕ} a mass bimodule? Precisely when ϕ is determined by its action on a *nest* of projections.

Synthesis

A (ω -closed) set $\Omega \subseteq X_1 \times X_2$ is **synthetic** if there is only one w*-closed masa bimodule \mathcal{U} with Ω as its support (: $\mathcal{U} = \mathcal{M}_{max}(\Omega)$).

Arveson: There exist non-synthetic sets (from harmonic analysis). But,

A ternary masa bimodule U is (not only synthetic but also) "hereditarily synthetic":

Every $S \subseteq \mathcal{U}$ which is a left $[\mathcal{U}^*\mathcal{U}]$ -module is synthetic.

A. Katavolos and I.G. Todorov, Normalizers of operator algebras and reflexivity, Proc. London Math. Soc. (to appear), ArXiv: math.OA/0005178