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Introduction

Goal is to Mathematically Model Mammalian Visual System 

If done properly, modeling introduces theory.

I will report on a joint experimental & theoretical effort.
Kaplan & Sirovich Laboratories

Visual system has remarkable range. We can detect as few as
~5 photons and up to O(1013) that amount in daylight.

Encoded signal travels to cortex as ‘action potentials’ spikes.

Beautiful world we see is cortical decoding of encoded 
photon arrivals. 

Seeing starts with encoding photon arrivals, biochemically,
into electrical signals(retina).



Transformation of External World

The primary visual cortex is a piece of tissue, less than 2mm thick, 15 cm2 in
area. Visual cortex contains roughly 109 neurons in roughly 40 areas.
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Map of Visual World onto Primate Visual Cortex, Tootel, et al
(1988)



from D. Hubel, 1988

Monkey primary visual cortex
From LeVay, Hubel & Wiesel, 1975

The inputs from the two eyes are segregated 
all the way to the visual cortex



Golgi staining of cortical cells

1.8 mm



Numbers

Retina – 108 photoreceptors

Optic Tract-106 fibers

LGN – 106 neurons
Primary Visual Cortex (15 cm2 ) – 108 neurons

(full visual field)

1mm2 : full range of modalities – 105 neurons

10 modalities/mm – 104 neurons/patch
Each neuron talks to 104 – 105 neurons

Roughly 40 areas, each covers the full field of vision

Time scales range from sub-millisec. to many seconds.

Faithful direct numerical simulation is not possible.
Long Range Goal- A Numerical Cortex



Optical Imaging

Cortical activity in response to 
(computer controlled) stimuli produces 

changes in reflectivity from cortical 
tissue.

Mapping of primary visual cortex 
under ocular dominance and 
orientation preference well 

established by optical imaging.

Optical imaging has presented us with 
serious signal analysis problems.

Signal / Noise    ~10-3 – 10-4
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Orientation Preference Map
(At each pixel determine preferred orientation.)



Orientation Preference Columns
G. Blasdel (1989)



Orientation & Direction



Orientation Dynamics



Modalities

Primary Visual Cortex, V1 (or area 17) is 
Gateway to Visual Cortex

External World is Represented in Terms of:

1. Orientation

2. Spatial Frequency

3. Temporal Frequency

4. Direction

5. Two Color Mechanisms

7. ?????

} Local Fourier Analysis
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(Excellent Hodgkin-Huxley Approximation)

Single Neuron Dynamics
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Additional Remarks
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Direct Simulation vs Population Calculation: Sinusoidal 
Driving: No Free Parameters



Excitation & Inhibition



Equilibrium Density, θ=100, h=.03
Direct Simulation,O(105) Neurons, vs. Population Calculation



The Eigenfunction Problem
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Adjoint Problem

λ=0 corresponds to equilibrium (φ =1 for adjoint problem)



Zero Leak (γ=γ=0)0)
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Zero Leak (γ=γ=0) ,0) ,continued



Eigenvalues , Lφ λφ=
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1λ = − : Algebraic multiplicity N; Geometric multiplicity one.

Zero Leak (γ=γ=0) ,0) ,continued

Eigenvalues of C:

1λ = − : Algebraic multiplicity N; Geometric multiplicity one.



Finite Leak, γγ≠≠ 00; h=1/2: Two Compartments 
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Spectrum, θθ=10=10
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Equilibrium Density, ΘΘ =10=10



Spectra (non-zero leak) θ=30, h=.03



Equilibrium Density, first eigenfunction, θ=30, h=.03
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Solution by Eigenfunctions
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An Exact Solution: Equilibrium Jumping



Truncated Approximations



Equilibrium Solutions

Feedback (Gain) G:

Then

Equilibrium

Open loop, k=0, yields closed loop,k≠0, family of solutions.
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Stability of Equilibrium

with

Linearize

This is a one-dimensional perturbation of the linear operator.



Stability of Equilibrium



Time Delay



Stability Diagram



Behavior at Three Gains



Inhibition, G<0
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Model of an Orientation Hypercolumn
via the Kinetic Equation



Sub-population Densities
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INTERACTING POPULATIONS



Ringach et al ‘97 Omurtag et al ‘00

experiment population model

Reverse Correlation Experiment



Remarks

Anatomy and physiology tell us that there are a relative small 
number neuron types. Each may require its own model.

E.g., there exist cells, having calcium channels, which 
can fire in bursts as well as tonically. This has been 

modeled as part of a study of the LGN & V1

Typical cortical neurons synapse with O(104) cells. This 
certainly justifies the use of Poisson arrivals. However 

there are highly correlated cells, e.g., RGC & LGN cells. 
This has led to an interesting new model.



Estimate that the external world is mapped to a mosaic
of O(103) elements on V1.

If 10 modalities/element then O(104) populations in 
primary visual cortex.

Presently this would be an excessive calculation. But not for long.
Nevertheless substantial portions of tissue can now be simulated.

Problem is that we know very little about cortical interactions.

The present objective is to use simulation as an 
exploratory tool, in conjunction with experiment, to 

leverage both theory & experiment.
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