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Klüver: We wish to stress merely one point, namely, that

under diverse conditions the visual system responds in

terms of a limited number of form constants.



Outline

1. Visual Hallucinations

2. Structure of Visual Cortex

(a) Hubel and Wiesel hypercolumns

(b) local and lateral connections

(c) isotropy versus anisotropy

3. Pattern Formation in Planar Systems

(a) Symmetry

(b) Four models

4. Interpretation of Patterns in Retinal Coordinates

(a) threshold patterns

(b) thin line contour patterns

(c) time-periodic patterns
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Visual Hallucinations

• Drug uniformly forces activation of cortical cells

• Leads to spontaneous pattern formation on cortex

• Map from retina to primary visual cortex;
translates pattern on cortex to visual image

• Patterns fall into four form constants (Klüver, 1928):

– tunnels and funnels

– spirals

– lattices includes honeycombs and triangles

– cobwebs

Figure 1: Funnels and spirals (G. Oster, Scientific American, 1970
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Figure 2: Cobweb (Patterson, 1992).

Figure 3: (Left) Phosphene produced by deep binocular pressure on eyeballs;
(Right) Honeycomb generated by marihuana
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Orientation Sensitivity of Cells in V1

• Most V1 cells sensitive to orientation of contrast edge

Figure 4: Distribution of orientation preferences in Macaque V1 (Blasdel)

• Hubel and Wiesel, 1974

Each millimeter there is a hypercolumn consisting of
orientation sensitive cells in every direction preference
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Structure of Primary Visual Cortex (V1)

• Optical imaging exhibits pattern of connection

Figure 5: V1 lateral connections: Macaque (left, Blasdel) and Tree Shrew (right, Fitzpatrick)

• Two kinds of coupling: local and lateral

(a) local: cells < 1mm apart tend to connect equally
with most neighbors

(b) lateral: cells make contact each mm along axons;
connections in direction of cell’s preference

• Lateral coupling small compared to local coupling

Anisotropy in lateral coupling small

Optical imaging suggests spatial anisotropy.
Tree shrew: anisotropy pronounced; major axis of con-
nections parallel to visuotopic axis.
Macaque: most anisotropy is stretching in direction or-
thogonal to ocular dominance columns
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Action of Euclidean Group

• Euclidean group: rotations, reflections, translations

• Abstract Physical space of V1 is R2 × S1 — not R2

Hypercolumn becomes circle measuring orientation

hypercolumn

lateral connections

local connections

Figure 6: Abstraction of short and anisotropic long range connections in V1

• Euclidean groups acts on R2 × S1 by
Rθ(x, ϕ) = (Rθx, ϕ + θ) κ(x, ϕ) = (κx,−ϕ)

Ty(x, ϕ) = (Tyx, ϕ)

• Different action of E(2): expect new patterns
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Isotropic Lateral Connections

hypercolumn

lateral connections

local connections

Figure 7: Abstraction of short and isotropic long range connections in V1

• Isotropic lateral connections imply new S1 symmetry

φ̂(x, ϕ) = (x, ϕ + φ̂)

•Weak anisotropy is forced symmetry breaking of

E(2)+̇S1 → E(2)
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Four Models

1. E(2) acting on R2 (Ermentrout-Cowan)

neurons located at each point x

Funnels and spirals

2. Shift-twist action of E(2) on R2×S1 (Bressloff-Cowan)

hypercolumns located at x; neurons tuned to ϕ

anisotropic lateral connections

Thin line hallucinations: cobwebs

3. E(2)+̇S1 acting on R2 × S1 (Wolf)

isotropic lateral coupling

Time periodic hallucinations

Rotating spirals and tunneling

4. Symmetry breaking: E(2)+̇S1 → E(2)

weakly anisotropic lateral coupling

Pulsations
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Pattern Formation Outline

1. Double-Periodicity and Planar Lattices

• Translations: plane waves factors

• Reflections: scalars and pseudoscalars

• Rotations: infinite-dimensional eigenspaces

• Lattices: back to finite dimensions

2. Bifurcation Theory with Symmetry

• Equivariant Branching Lemma

• Scalar and pseudoscalar bifurcations

3. Planforms

• Adaptation to Visual Cortex

Line Fields, contours, and thresholding

•Winner-take-all strategy

• Cortex to Retina transformation
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Observations Using Symmetry
Bosch Vivancos, Chossat, Melbourne

• Assume differential equations on R2 × S1

with Euclidean equivariant linearization L

• TRANSLATIONS on R2 × S1 imply

Wk = {u(ϕ)eik·x + c.c : u : S1 → C}

is L-invariant for every dual wave vector k ∈ R2

– Eigenfunctions have plane wave factors

• REFLECTION ρ so that ρk = k: ρ : Wk → Wk

ρ
(

u(ϕ)eik·x
)

= ρ(u(ϕ))eik·x

– ρ2 = 1 implies Wk = W+
k ⊕W

−
k

where ρ acts as +1 on W+
k and −1 on W−

k

– Eigenfunctions are either even or odd

even called scalar odd called pseudoscalar

• ROTATIONS: Rθ(Wk) = WRθ(k)

Rθ

(

u(ϕ)eik·x
)

= Rθ(u(ϕ))eiRθ(k)·x

– Rotation symmetry implies kerL is∞-dimensional
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Planar Lattices

• Double-periodicity: Look for solns on lattice L

FL = {f ∈ F : f (x + `) = f (x) ∀` ∈ L}

• Finite number of rotations: ker L is finite-dimensional

• Choose lattice size so shortest dual vectors are critical

• Translations leave FL invariant

T2 = R2/L is effective action of translations

• Holohedry HL ⊂ O(2) is group that preserves L
HL leaves space FL invariant

• ΓL = HL+̇T2 is group of symmetries

• Two dispersion curves: scalar and pseudoscalar

• The smallest k∗ = |k| for which there is an
eigenfunction is called the critical wave number
Find k∗ using dispersion curves
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Equivariant Bifurcation Theory

• Symmetry group Γ: f (γx) = γf (x)

• Fix(Σ) = {x ∈ Rn : σx = x ∀σ ∈ Σ}

• Fix(Σ) is flow invariant

Proof: f (x) = f (σx) = σf(x)

The Equivariant Branching Lemma

• Isotropy subgroup Σ ⊂ Γ is axial if

dim Fix(Σ) = 1

on critical eigenspace

• Generically, there exists a branch of
solutions with Σ symmetry for every
axial subgroup Σ
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Planforms For Ermentrout-Cowan

Square lattice: Two axial subgroups of T2+̇D4

O(2)⊕ Z2 stripes and D4 squares

Hexagonal lattice: Two axial subgroups of T2+̇D6

O(2)⊕ Z2 stripes and D6 hexagons
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Figure 8: Thresholding of axial eigenfunctions: (left) stripes; (right) squares
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Figure 9: Thresholding of axial eigenfunction hexagons
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Adaptations for Orientation Tuned Cortex

• Study nonoriented directions: u(x, ϕ + π) = u(x, ϕ)

• Two dispersion curves: one for even and one for odd
even = scalar action odd = pseudoscalar action

Both representations occur in reasonable models

Name Axial Planform Eigenfunction

squares D4 u(ϕ) cosx+ u
(

ϕ− π
2

)

cos y
stripes O(2)⊕D1 u(ϕ) cosx

hexagons D6
∑2

j=0 u (ϕ− jπ/3) cos(kj · x)

stripes O(2)⊕D1 u(ϕ) cos(k1 · x)

Table 1: Axial planforms when u(ϕ) = u(−ϕ) is even.

Name Axial Planform Eigenfunction

square D∗4 u(ϕ) cosx− u
(

ϕ− π
2

)

cos y
stripes O(2)⊕D∗1 u(ϕ) cosx

hexagons Z6
∑2

j=0 u (ϕ− jπ/3) cos(kj · x)

triangles D3
∑2

j=0 u (ϕ− jπ/3) sin(kj · x)

rectangles D2 u
(

ϕ− π
3

)

cos(k2 · x)− u
(

ϕ + π
3

)

cos(k3 · x)
stripes O(2)⊕D∗1 u(ϕ) cos(k1 · x)

Table 2: Axial planforms when u(ϕ) = −u(−ϕ) is odd. ∗ = glide reflection
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Winner-Take-All Strategy
Creation of Line Fields

• Given: Activity of neuron in hypercolumn at x
sensitive to direction ϕ

• Assumption: Most active neuron in hypercolumn
suppresses other neurons in hypercolumn

• Consequence: For all x find ϕx ∈ S1 where
activity is maximum

• Planform: Draw small line segment at x
oriented at angle ϕx
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How to Find Amplitude Function u(ϕ)

• Isotropic connections imply EXTRA S1 symmetry

• S1 decomposes Wk into sum of irreducible subspaces

Wk,p = {zepϕie2πik·x + c.c. : z ∈ C} ∼= R2

Generically, eigenfunctions of L lie in Wk,p for some p

• W+
k,p = {cos(pϕ)e2πik·x} scalar case

W−
k,p = {sin(pϕ)e2πik·x} pseudoscalar case

•Wilson-Cowan models lead to
p = 0 or p = 1 bifurcations in scalar case
p = 1 bifurcations in pseudoscalar case

• Compute pictures in p = 1 cases

u(ϕ) ≈ cos(ϕ) and u(ϕ) ≈ sin(ϕ)
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Cortex to Retina

• Neurons on cortex are uniformly distributed

• Neurons in retina fall off by 1/r2 from fovea

• Unique conformal map takes uniform density square
to 1/r2 density disk: complex exponential

• Cortex to retinal map is

r = ω exp(εx)
θ = εy

In retinal images we take

ω = 30/e2π and ε = 2π/nh

where nh = 36 = # hypercolumn widths in cortex

• Straight lines on cortex 7→
circles, logarithmic spirals, and rays in retina
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(I)   (II)

(III) (IV)
Figure 10: Hallucinatory form constants. (I) funnel and (II) spiral images seen following
ingestion of LSD [Siegel & Jarvik, 1975], (III) honeycomb generated by marihuana [Clottes
& Lewis-Williams (1998)], (IV) cobweb petroglyph [Patterson, 1992].
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Planforms in the Visual Field

(a) (b)

(c) (d)
Visual field planforms
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Isotropic Coupling: Additional S1 symmetry

• ϕ̂(x, ϕ) = (x, ϕ + ϕ̂)

• Eigenspaces: sum of even and odd

• Square lattice:

four axials

one maximal subgroup with 2D fixed-point subspace

• Hexagonal lattice:

Nine axials

three maximal subgroups with 2D fixed-pt subspaces
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Hallucinations in Isotropic Coupling Model

Figure 11: (Top) Conjugate solutions (7)
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Figure 12: Phosphene-like planforms: (top) planform (12); (bottom) planform (9)
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Weakly Anisotropic Coupling

• Square lattice: Forced symmetry-breaking to

1. scalar and pseudoscalar stripes

2. scalar and pseudoscalar squares

3. two new equilibrium planforms

4. a time-periodic rotating wave

• Hexagonal lattice: Forced symmetry-breaking to

1. seven types of equilibia

2. two contracting or expanding periodic states

3. two rotating waves

4. state that is an equilibrium or time-periodic
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