OVERVIEW OF TOPOLOGICAL DESCENT THEORY

 $\Phi: \mathcal{C}^{op} \to \mathcal{C}AT$ a pseudofunctor

 $p:E\to B$ in $\mathfrak C$

$$E \times_B E \times_B E \xrightarrow{\frac{\pi_{12}}{\pi_{13}}} E \times_B E \xrightarrow{\frac{\pi_1}{\pi_{23}}} E$$

 $Des_{\Phi}(p)$ = internal actions of Eq(p) on CAT

$$\Phi(B) \xrightarrow{K} \mathsf{Des}_{\Phi}(p)$$
 $\Phi(E) \xrightarrow{U^p}$

p Φ -descent if K is full and faithful

p effective Φ -descent if K is an equivalence

$$C = Top$$

 ${\mathbb E}$ a pullback stable class of continuous maps

 $\Phi(B) = \mathbb{E}(B)$ full subcategory of $\Im op \downarrow B$

 $\Phi(p)$ induced by $p^*: \Im op \downarrow B \to \Im op \downarrow E$

$$\mathbb{E}(B) \xrightarrow{K} \mathsf{Des}_{\mathbb{E}}(p)$$
 $\Phi(p) \xrightarrow{\mathbb{E}(E)} U^p$

 \mathbb{E} -descent, effective \mathbb{E} -descent

 \mathbb{E} = all maps, descent reduces to monadicity

$$\operatorname{Top} \downarrow B \xrightarrow{K} \operatorname{Des}(p) \cong (\operatorname{Top} \downarrow E)^{\mathbb{T}}$$

$$\operatorname{Top} \downarrow E \xrightarrow{U^{\mathbb{T}}}$$

 ${\mathbb T}$ being the monad induced by $p ! \dashv p^*$

[Bénabou and Roubaud, 70] [Beck, unpublished]

T-algebras are triples

$$(C, \gamma : C \to E, \ \xi : E \times_B C \to C)$$

such that, for $\xi(e,c) = e \cdot c$,

$$\gamma(e \cdot c) = e$$
, $\gamma(c) \cdot c = c$ and $e \cdot (e' \cdot c) = e \cdot c$.

The class of effective descent morphisms in $\Im op$ properly contains the classes of

- locally sectionable [Janelidze and Tholen, 94]
- open surjective [Moerdijk 90; Sobral 91]
- proper surjective [Vermeulen, 94; Moerdijk 90]
- triquotient maps [Plewe, 97]

and has good properties: e.g. it is

- stable under pullbacks [Sobral and Tholen, 91]
- closed for composition [Reiterman, Sobral, Tholen, 93]
- closed for products [Clementino and Hofmann, 00]

p is a descent morphism $\Leftrightarrow p$ is a universal quotient [Janelidze and Tholen, 1991]

 $p:E\to B$ is a universal quotient \Leftrightarrow

(i)
$$p^{-1}(b) \subseteq \bigcup_{i \in I} U_i \implies b \in \operatorname{Int}(p(U_{i_1}) \cup \cdots \cup p(U_{i_k}))$$
 for some finite subset of I .

 \Leftrightarrow

(ii)
$$\mathcal{U} \to b \ \Rightarrow \ \exists \mathcal{V} \to e \in p^{-1}(b)$$
 such that $p(\mathcal{V}) = \mathcal{U}$. [Day and Kelly, 1970]

p is an effective descent morphism \Leftrightarrow every crest of ultrafilters in B has a lifting along p.

[Reiterman and Tholen, 1994]

In 1991 Jan Reiterman constructs the first example of a non-effective descent morphism.

 $(C, \gamma, \xi) \in \mathsf{Des}(p)$ and $q = \mathsf{coeq}(\pi_2, \xi)$

descent situation defining A

In $\Im op$, a quocient p is an effective descent morphism if and only if, for every descent situation defining the space A, (1) is a pullback.

[Sobral, 1991]

Finite example of a non-effective descent morphism.

[Sobral, 1995]

Finite example of a surjective effective étale-descent morphism which is not an effective descent morphism.

[Sobral, 1994]

$$\begin{array}{rcl} \mathfrak{F}inTop &\cong & \mathfrak{F}inPreord \\ (X, \mathfrak{O}) &\longmapsto & (X, \to) \\ & y \to x \text{ if } y \in \cap \{U \,|\, x \in U \in \mathfrak{O}(X)\} \end{array}$$

In $\Im Top$

[Janelidze and Sobral, 1999]

and then the description of pullback stable regular epimorphisms and the Reiterman-Tholen theorem are the appropriate infinite versions of these theorems.

In $\Im inTop$

⇒ [Janelidze and Sobral, 99]⇐ [Clementino, 00]

Characterization of triquotients in $\Im op$

[Clementino and Hofmann, 00]

$\Im InDLat^{op} \sim \Im InOrd$

In $\Im DLat$

$$D$$
 $I_1 \subseteq I_2 \subseteq I_3$ m effective codescent morph. \Leftrightarrow $I_1 \subseteq I_2 \subseteq I_3$ $I_2 \subseteq I_3$ $I_3 \subseteq I_2 \subseteq I_3$ $I_4 \subseteq I_2 \subseteq I_3$ $I_5 \subseteq I_5 \subseteq I_5$ $I_5 \subseteq I_5 \subseteq I_5$ $I_5 \subseteq I_5 \subseteq I_5$

(effective) \mathbb{E} -descent

```
\begin{split} \mathbb{E} &= \{ \text{bijective continuous maps} \} \\ \text{(global) descent} &= \mathbb{E}\text{-descent} \\ \text{(global) effective descent} &= \text{effective } \mathbb{E}\text{-descent} \\ \text{morphisms which are stable under pullback} \\ \text{[Sobral, 1994]} \end{split}
```

```
\begin{split} \mathbb{E} &= \{ \text{\'etale maps} \} \\ \mathbb{E}\text{-descent [Janelidze and Tholen, 1994]} \\ &= \{ \text{\'effective } \mathbb{E}\text{-descent (open problem)} \\ &= \{ \text{\'etale maps} \} \} \\ &= \{ \text{\'etale maps} \} \\ &= \{ \text{\'etale maps} \} \} \\ &= \{ \text{\'etale maps} \} \\ &
```

In $\mathcal{F}inTop$

 $f:A \to B$ is an étale map $\Leftrightarrow f$ is a discrete fibration

$$\mathbb{E}(B) \cong \mathbb{S}et^{B^{\mathsf{op}}}$$

$$E \xrightarrow{p} B \qquad Z \dashv S : \mathfrak{C}at \to \mathfrak{D}oubleCat$$

$$Z \not\models Z(\mathsf{Eq}(p))$$

$$Z(\mathsf{Eq}(p)) = \overline{E}/\sim$$

- \sim the smallest equivalence relation which contains
- $((\alpha, \beta), \alpha\beta)$ if $\alpha, \beta \in E \times_B E$ or $\alpha, \beta \in E$
- pairs forming squares

transforms into

p étale-descent $\Leftrightarrow \varphi^{\mathsf{op}}$ lax epimorphism

p effective étale-descent $\Leftrightarrow \varphi^{\mathrm{op}}$ equivalence

In $\Im Top$

 $p:E\to B$ effective étale-descent morphism \Leftrightarrow

- (i) $p: E \to p(E)$ is a quotient map;
- (ii) Z(Eq(p)) is a preorder;
- (iii) p is essentially surjective on objects.

[Janelidze and Sobral, 01]

In Cat,

 $P:\mathcal{E}\to\mathcal{B}$ is a lax epimorphism

if $(-)P: [\mathcal{B},\mathcal{C}] \to [\mathcal{E},\mathcal{C}]$ is full and faithful,

for every small category C.

$$P:\mathcal{E}\to\mathcal{B}$$
 lax epimorphism

 $\Leftrightarrow P^* = (-)P : [\mathcal{B}, \mathbb{S}et] \to [\mathcal{E}, \mathbb{S}et]$ full and faithful $\Leftrightarrow h//P$ connected for all morphisms h of \mathcal{B}

[Adámek, el Bashir, Sobral and Velebil, 01]

$$\mathcal{E} \xrightarrow{\Psi} \mathcal{B}$$
 $Z(\mathsf{Eq}(p))$

 $\mathbb{E} = \{ \text{discrete fibrations} \}$ $\{ \text{discrete op-fibrations} \}$

 $P \mathbb{E}$ -descent $\Leftrightarrow \varphi$ lax epimorphism

P effective \mathbb{E} -descent \Leftrightarrow

 $\overline{\varphi}: CauchyC(Z(\mathsf{Eq}(p))) \to CauchyC(B)$ is an equivalence

$$P^* = (-)P \text{ monadic} \Leftrightarrow$$

Every object of ${\mathfrak B}$ is a retract of an object in $P[{\mathcal E}]$ [Adámek, el Bashir, Sobral and Velebil, 01]

 P^* monadic $\not\Rightarrow P$ is \mathbb{E} -descent