A quasibialgebra H is an associative k-algebra equipped with a non-coassociative comultiplication $\Delta: H \rightarrow H \otimes H$, a counit $\varepsilon: H \rightarrow k$, and an invertible element $\phi \in H \otimes H \otimes H$ such that the category ${ }_{H} \mathcal{M}$ of left H-modules is a monoidal category with respect to tensor product over k,

$$
\left.\begin{array}{l}
h \cdot(v \otimes w)=h_{(1)} v \otimes h_{(2)} w \text { for } V, W \in{ }_{H} \mathcal{M}, v \in V, w \in W \\
\Phi:(U \otimes V) \otimes W
\end{array}\right)
$$

The element ϕ, the associator, has to satisfy suitable axioms so that we get a monoidal category as stated:

But we vow never to use these at all!!
...though they're not hard to find, really:

$$
\begin{gathered}
(H \otimes \Delta) \Delta(h) \cdot \phi=\phi \cdot(\Delta \otimes H) \Delta(h) \\
(H \otimes H \otimes \Delta)(\phi) \cdot(\Delta \otimes H \otimes H)(\phi) \\
=(1 \otimes \phi) \cdot(H \otimes \Delta \otimes H)(\phi) \cdot(\phi \otimes 1) \\
(\varepsilon \otimes H) \Delta(h)=h=(H \otimes \varepsilon) \Delta(h) \\
(H \otimes \varepsilon \otimes H)(\phi)=1
\end{gathered}
$$

Why not use the axioms?

- Calculations with ϕ and the axioms are complicated and not very conceptual.
- There's extra notation for the "components" $\phi=\phi^{(1)} \otimes \phi^{(2)} \otimes \phi^{(3)}$ and the inverse $\phi^{-1}=\phi^{(-1)} \otimes \phi^{(-2)} \otimes \phi^{(-3)}$.
- Especially bad mess if we need several copies of ϕ...
- We can expect to get away without the mess!

What shall we use instead?

We will use the monoidal category structure of ${ }_{H} \mathcal{M}$, which ought to contain all there is to know about the quasibialgebra H.
We will also use the monoidal category structure of ${ }_{H} \mathcal{M}_{H}$, where the associator isomorphism is given by

$$
\begin{aligned}
\Phi:(U \otimes V) \otimes W & \rightarrow U \otimes(V \otimes W) \\
u \otimes v \otimes w & \mapsto \phi(u \otimes v \otimes w) \phi^{-1} \\
& =\phi^{(1)} u \phi^{(-1)} \otimes \phi^{(2)} v \phi^{(-2)} \otimes \phi^{(3)} w \phi^{(-3)} .
\end{aligned}
$$

(For once, we actually use the axioms of ϕ here.)

The key observation:
H is a coassociative coalgebra within the monoidal category ${ }_{H} \mathcal{M}_{H}$. This is nothing but the modified coassociativity axiom

$$
\begin{aligned}
(H \otimes \Delta) \Delta(h) & =\phi \cdot(\Delta \otimes H) \Delta(h) \cdot \phi^{-1} \\
& =\Phi(\Delta \otimes H) \Delta(h)
\end{aligned}
$$

First target, "classical" Hopf case

Theorem 1 (The structure theorem for Hopf modules). Let H be a Hopf algebra.

A category equivalence $\mathcal{M}_{k} \cong \mathcal{M}_{H}^{H}$ is given by
$V \mapsto V \otimes H:$
Definition 2. A Hopf module $M \in \mathcal{M}_{H}^{H}$ is a right H-module and -comodule such that $(m h)_{(0)} \otimes(m h)_{(1)}=m_{(0)} h_{(1)} \otimes m_{(1)} h_{(2)}$ for $m \in M$ and $h \in H$.

Obviously, this makes no sense in the quasi-Hopf case.
Note, though, that the Hopf module condition says that
$M \rightarrow M_{\bullet} \otimes H_{\bullet}$ is an H-module map,
or shorter: M is an H-comodule in \mathcal{M}_{H}.

(Quasi-)Hopf (bi-)modules

Definition 3. Let H be a quasi-bialgebra.
A Hopf module in ${ }_{H} \mathcal{M}_{H}^{H}$ is an H-comodule within the monoidal category ${ }_{H} \mathcal{M}_{H}$.
Theorem 4. Let H be a finite quasi-bialgebra.
The following are equivalent:

1. H is a quasi-Hopf algebra.
2. The functor $\mathcal{R}:{ }_{H} \mathcal{M} \rightarrow{ }_{H} \mathcal{M}_{H}^{H}$ is a category equivalence.
3. The category ${ }_{H} \mathcal{M}_{\mathrm{f} . \mathrm{d} \text {. of finite left } H \text {-modules is rigid. }}$
$(1) \Rightarrow(3)$ is already in Drinfeld (without "finite").
$(1) \Rightarrow(2)$ is due to Hausser and Nill (without "finite").
$(3) \Rightarrow(1)$ for bialgebras is due to Ulbrich.
We shall discuss $(2) \Leftrightarrow(3) \Rightarrow(1)$, but first...

The dual case

It goes without saying that there is a dual notion of a coquasibialgebra, involving $\phi: H \otimes H \otimes H \rightarrow k$ instead of $\phi \in H \otimes H \otimes H$, and a nonassociative multiplication in place of a non-coassociative comultiplication.

For a coquasibialgebra H, both \mathcal{M}^{H} and ${ }^{H} \mathcal{M}^{H}$ are monoidal categories,
H is an associative algebra in ${ }^{H} \mathcal{M}^{H}$,
one can define Hopf modules in ${ }_{H}^{H} \mathcal{M}^{H}$,
and a functor $\mathcal{L}: \mathcal{M}^{H} \rightarrow{ }_{H}^{H} \mathcal{M}^{H}$.

Theorem 4*: Let H be a coquasibialgebra.
The following are equivalent:

1. H is a coquasi-Hopf algebra.
2. The functor $\mathcal{L}: \mathcal{M}^{H} \rightarrow{ }_{H}^{H} \mathcal{M}^{H}$ is a category equivalence.
3. The category $\mathcal{M}_{\mathrm{f} . \mathrm{d} .}^{H}$ of finite right H-comodules is rigid.
$(1) \Rightarrow(3)$ is formally dual to Drinfeld.
$(3) \Rightarrow(1)$ is due to Ulbrich for bialgebras.
$(1) \Rightarrow(2)$ can be proved by arguments formally dual to those of Hausser and Nill.
$(2) \Leftrightarrow(3)$ can be proved by formally dual arguments to those we shall give below for Theorem 4.

But $(3) \Rightarrow(1)$ is false for $\operatorname{dim} H=\infty$.

Recall that a monoidal category \mathcal{C} is rigid if for all $V \in \mathcal{C}$ there exists a dual object $\left(V^{\vee}, \mathrm{ev}, \mathrm{db}\right)$,
where $V^{\vee} \in \mathcal{C}$, ev : $V^{\vee} \otimes V \rightarrow I$ and $\mathrm{db}: I \rightarrow V \otimes V^{\vee}$ satisfy

$$
\begin{gathered}
\left(V \xrightarrow{\mathrm{db} \otimes V}\left(V \otimes V^{\vee}\right) \otimes V \xrightarrow{\Phi} V \otimes\left(V^{\vee} \otimes V\right) \xrightarrow{V \otimes \mathrm{ev}} V\right)=\mathrm{id} \\
\left(V^{\vee} \xrightarrow{V^{\vee} \otimes \mathrm{db}} V^{\vee} \otimes\left(V \otimes V^{\vee}\right) \xrightarrow{\Phi}\left(V^{\vee} \otimes V\right) \otimes V^{\vee} \xrightarrow{\mathrm{ev} \otimes V^{\vee}} V^{\vee}\right)=\mathrm{id}
\end{gathered}
$$

A quasiantipode for a quasibialgebra H is a triple (S, α, β) where S is an algebra anti-endomorphism of H and $\alpha, \beta \in H$ satisfy

$$
\begin{array}{rlrl}
S\left(h_{(1)}\right) \alpha h_{(2)} & =\varepsilon(h) \alpha & h_{(1)} \beta S\left(h_{(2)}\right) & =\varepsilon(h) \beta \\
\phi^{(1)} \beta S\left(\phi^{(2)}\right) \alpha \phi^{(3)} & =1 & S\left(\phi^{(-1)}\right) \alpha \phi^{(-2)} \beta \phi^{(-3)} & =1
\end{array}
$$

The definition of a coquasi-Hopf algebra is, of course, formally dual!

If H is a quasi-Hopf algebra (i.e. has a quasiantipode) then
 evaluation and coevaluation

$$
\begin{array}{rlrl}
V^{*} \otimes V & \rightarrow k & k & \rightarrow V \otimes V^{*} \\
\varphi \otimes v & \mapsto \varphi(\alpha v) & 1 & \rightarrow \beta v_{i} \otimes v^{i}
\end{array}
$$

In particular, $H_{H} \mathcal{M}_{\text {f.d. }}$ is rigid when H is a quasi-Hopf algebra, and $\operatorname{dim}\left(V^{\vee}\right)=\operatorname{dim}(V)$ for all $V \in_{H} \mathcal{M}_{\text {f.d. }}$.

Of course, the same holds true for coquasi-Hopf algebras!
However, there is an example of a coquasibialgebra H such that $\mathcal{M}_{\mathrm{f} . \mathrm{d} .}^{H}$ is rigid, and there is $V \in \mathcal{M}_{\mathrm{f} . \mathrm{d} .}^{H}$ with $\operatorname{dim}\left(V^{\vee}\right) \neq \operatorname{dim}(V)$. In particular, H is not a coquasi-Hopf algebra.
...now, back to business!
To prepare for Theorem 4 we have to establish a nice functor

$$
\mathcal{R}:{ }_{H} \mathcal{M} \rightarrow{ }_{H} \mathcal{M}_{H}^{H}
$$

...by just using generalities on monoidal categories:
Since H is a coalgebra in the monoidal category ${ }_{H} \mathcal{M}_{H}$, the underlying functor ${ }_{H} \mathcal{M}_{H}^{H} \rightarrow{ }_{H} \mathcal{M}_{H}$ forgetting the comodule structure of an H-comodule in ${ }_{H} \mathcal{M}_{H}$ has a right adjoint.

$$
\begin{aligned}
& . P_{.} \quad \mapsto \quad . P_{.} \otimes H_{\bullet} \\
& \mathcal{R}:=\left({ }_{H} \mathcal{M} \rightarrow{ }_{H} \mathcal{M}_{H} \xrightarrow{\tilde{R}} \quad{ }_{H} \mathcal{M}_{H}^{H}\right) \\
& V \quad \mapsto \quad . V_{\varepsilon} \quad \mapsto \quad . V \otimes . H:
\end{aligned}
$$

Now we will sketch a proof of
Theorem 5. Let H be a finite quasibialgebra. Then the following are equivalent:

1. The functor $\mathcal{R}:{ }_{H} \mathcal{M} \rightarrow{ }_{H} \mathcal{M}_{H}^{H}$ is an equivalence.
2. The category ${ }_{H} \mathcal{M}_{\mathrm{f} . \mathrm{d} .}$ is rigid.

- We start by an observation on ${ }_{H} \mathcal{M}_{H}^{H}$ which is not a general categorical fact. The category ${ }_{H} \mathcal{M}_{H}^{H}$ is a monoidal category with respect to the tensor product over H; i.e. for $M, N \in{ }_{H} \mathcal{M}_{H}^{H}$ we have $M \otimes_{H} N \in{ }_{H} \mathcal{M}_{H}^{H}$ with the codiagonal comodule structure. The associator is trivial!
- Moreover, the functor \mathcal{R} is a monoidal functor. More generally $\mathcal{R}(V) \otimes_{H} M \cong(V \otimes H) \otimes_{H} M \cong . V \otimes, ~ M$: for all $V \in{ }_{H} \mathcal{M}$ and $M \in{ }_{H} \mathcal{M}_{H}^{H}$. Really!
- It is easy to check that \mathcal{R} is fully faithful and exact. So the question is whether it is essentially surjective. The image of \mathcal{R} is closed under limits, colimits, and tensor products.
- We can form cotensor products in the monoidal category $\mathcal{C}={ }_{H} \mathcal{M}_{H}$. So for $M \in{ }_{H} \mathcal{M}_{H}^{H}$ we have $M \cong M \square_{H} H$ which amounts to an equalizer

$$
0 \rightarrow{ }_{\bullet} M_{\bullet}^{\bullet} \rightarrow M_{\bullet} \otimes_{\bullet} H_{\bullet}^{\bullet} \rightrightarrows\left(. M_{\bullet} \otimes_{\bullet} H_{\bullet}\right) \otimes_{\bullet} H_{\bullet}^{\bullet}
$$

Thus we need only know when objects of the form $P \otimes H$ with $P \in{ }_{H} \mathcal{M}_{H}$, are in the image of \mathcal{R}.

- For $P \in{ }_{H} \mathcal{M}_{H}$ we have $P \cong P \otimes_{H} H$; that is, we have a coequalizer

$$
. P \otimes H \otimes H . \rightrightarrows . P \otimes H_{\bullet} \rightarrow . P_{\bullet} \rightarrow 0
$$

So we need only check when $P \otimes H$ is in the image of \mathcal{R} in the case $P=. V \otimes U$. for $V \in_{H} \mathcal{M}$ and $U \in \mathcal{M}_{H}$.

- Since $\left(. V \otimes U_{\bullet}\right) \otimes . H_{\mathbf{\bullet}} \cong\left(. V \otimes . H_{\bullet}^{\bullet}\right) \otimes_{H}\left(U_{\bullet} \otimes . H_{\mathbf{\bullet}}\right)$ and \mathcal{R} is monoidal, we actually need only check that $U_{\bullet} \otimes . H_{\mathbf{\bullet}}$ is in the image of \mathcal{R} when $U \in \mathcal{M}_{H}$.
- We may assume U is finite-dimensional, so $U=V^{*}$ for some $V \in{ }_{H} \mathcal{M}_{\text {f.d. }}$.

Claim: All such $V^{*} \otimes H$ are in the image of \mathcal{R} iff ${ }_{H} \mathcal{M}_{\mathrm{f} . \mathrm{d} \text {. is rigid. }}$.
To prove this, one shows that $V^{*} \otimes H$ is something's dual.

Lemma: Let $V \in{ }_{H} \mathcal{M}_{\text {f.d. }}$. Then $\left(V^{*}\right), \otimes . H_{\bullet}$ is a dual object of $. V \otimes . H$: in ${ }_{H} \mathcal{M}_{H}^{H}$. Evaluation and coevaluation are given according to the identification

$$
V^{*} \otimes H \cong \operatorname{Hom}_{-H}(V \otimes H, H)
$$

of $V^{*} \otimes H$ with the dual of the finitely generated projective right H-module $V \otimes H$.
 $V^{*} \otimes H \cong \mathcal{R}\left(V^{\vee}\right)$, since monoidal functors preserve duals. If \mathcal{R} is an equivalence, the Lemma shows that any finite $M \in{ }_{H} \mathcal{M}_{H}^{H}$ has a dual, hence so does any $V \in{ }_{H} \mathcal{M}_{\mathrm{f} . \mathrm{d} .}$.

If H is a quasi-Hopf algebra, we learn more from the proof: In this case, for $V \in{ }_{H} \mathcal{M}$ and $U=V^{*} \in \mathcal{M}_{H}$ we have $V^{\vee}={ }_{S} U$, hence $U \bullet \otimes, H_{\bullet} \cong \mathcal{R}\left({ }_{S} U\right)$, and further, for $V \in{ }_{H} \mathcal{M}$,

$$
\begin{aligned}
\left(. V \otimes U_{\bullet}\right) \otimes . H_{\bullet} & \cong\left(. V \otimes{ }_{\bullet} H_{\bullet}^{\bullet}\right) \otimes_{H}^{\otimes}\left(U \bullet \otimes . H_{\bullet}^{\bullet}\right) \\
& \cong \mathcal{R}(V) \otimes \mathcal{R}\left({ }_{S} U\right) \\
& \cong \mathcal{R}\left(V \otimes{ }_{S} U\right) \\
& \cong \mathcal{R}\left({ }_{\mathrm{ad}}\left(. V \otimes U_{\bullet}\right)\right)
\end{aligned}
$$

Where, for $P \in{ }_{H} \mathcal{M}_{H}$, we define ${ }_{\text {ad }} P \in{ }_{H} \mathcal{M}$ to have the action $h \rightharpoonup p=h_{(1)} p S\left(h_{(2)}\right)$. More generally, we see that
. $P_{\bullet} \otimes{ }_{\bullet} H_{\bullet} \cong \mathcal{R}\left({ }_{\mathrm{ad}} P\right)$

Next target: The Double

...first, the ordinary Hopf picture:
If H is a finite Hopf algebra, its double $D(H)$ is a quasitriangular Hopf algebra, with underlying vector space $H^{*} \otimes H$.

The module category ${ }_{D(H)} \mathcal{M}$ is isomorphic to the center $\mathcal{Z}\left({ }_{H} \mathcal{M}\right)$.
By definition, objects of $\mathcal{Z}(\mathcal{C})$ are objects of \mathcal{C} plus a specified way of commuting them past objects of \mathcal{C}.

So $\mathcal{Z}\left({ }_{H} \mathcal{M}\right) \ni\left(V, \sigma_{V,-}\right)$, where $\sigma_{V X}: V \otimes X \rightarrow X \otimes V$ is an isomorphism, natural in $X \in{ }_{H} \mathcal{M}$. There are axioms, of course!

Without axioms, any $\sigma_{V,-}$ as above has to have the form

$$
\sigma_{V X}: V \otimes X \ni v \otimes x \mapsto v_{(-1)} \cdot x \otimes v_{(0)} \in X \otimes V
$$

For some "coaction" $V \ni v \mapsto v_{(-1)} \otimes v_{(0)} \in H \otimes V$.

To actually define an object in $\mathcal{Z}\left({ }_{H} \mathcal{M}\right)$, the "coaction" has to turn V into a Yetter-Drinfeld module $V \in{ }_{H}^{H} \mathcal{Y} \mathcal{D}$.
To get from here to the center, one turns the coaction into an action of H^{*}.
And one turns the Yetter-Drinfeld condition into a commutation relation between the actions of H and H^{*}.
And one turns this into the definition of an algebra structure on $H^{*} \otimes H . \ldots$. and that's the Drinfeld double.

There's an obvious reason why it can't work like that in the quasi-Hopf case:
H^{*} isn't even an associative algebra.
So how is it going to embed into an associative $H^{*} \otimes H$?
...of course one can try...

In fact everything works just fine in the quasi-Hopf case, except for the last two steps. Even the Yetter-Drinfeld condition stays the same:

$$
h_{(1)} v_{(-1)} \otimes h_{(2)} v_{(0)}=\left(h_{(1)} v\right)_{(-1)} h_{(2)} \otimes\left(h_{(1)} v\right)_{(0)}
$$

In the Hopf case, one turns this into

$$
h_{(1)} v_{(-1)} S\left(h_{(3)}\right) \otimes h_{(2)} v_{(0)}=(h v)_{(-1)} \otimes(h v)_{(0)}
$$

That won't work for the quasi-Hopf case (Antipodes are too complicated)
However, everything has been fixed by Hausser and Nill...by rather unwieldy calculations.

We'll do an approach with less calculations and more categories...

Let \mathcal{C} be a monoidal category. A \mathcal{C}-actegory is a category \mathcal{D} on which \mathcal{C} acts. This means that there is a functor $\diamond: \mathcal{C} \times \mathcal{D} \rightarrow \mathcal{D}$ and a natural isomorphism $\Psi:(P \otimes Q) \diamond V \rightarrow P \diamond(Q \diamond V)$, where $P, Q \in \mathcal{C}$ and $V \in \mathcal{D}$, which is coherent.

If C is a coalgebra in \mathcal{C}, then surely the comodule category \mathcal{C}^{C} is a \mathcal{C}-actegory. Just take $P \diamond V=P \otimes V^{\bullet}$.

So in particular ${ }_{H} \mathcal{M}_{H}^{H}$ is a ${ }_{H} \mathcal{M}_{H}$-actegory.
But ${ }_{H} \mathcal{M}_{H}^{H} \cong{ }_{H} \mathcal{M}$, so ${ }_{H} \mathcal{M}$ is a ${ }_{H} \mathcal{M}_{H}$-actegory, too.
The action \diamond comes via the equivalence, so, for $P \in{ }_{H} \mathcal{M}_{H}, V \in{ }_{H} \mathcal{M}$,

$$
\begin{aligned}
\mathcal{R}(P \diamond V) & \cong P \otimes \mathcal{R}(V) \cong P \otimes(V \otimes H) \\
& \cong(P \otimes V) \otimes H \cong \mathcal{R}(\mathrm{ad}(P \otimes V))
\end{aligned}
$$

and $P \diamond V \cong{ }_{\text {ad }}(P \otimes V)$.

We can turn the action into a "representation", a monoidal functor

tensor product
over k with
nontrivial associator
tensor product over H with trivial associator

This will turn any (co)algebra in ${ }_{H} \mathcal{M}_{H}$ (a non-(co)associative ordinary (co)algebra) into a (co)algebra in ${ }_{H} \mathcal{M}_{H}$, or an H-(co)ring.

In particular, this applies to the coalgebra $H \in{ }_{H} \mathcal{M}_{H}$, giving an H-coring $H \diamond H$.

Or to the algebra $H^{\vee} \cong H^{*} \in{ }_{H} \mathcal{M}_{H}$, giving an H-ring and hence k-algebra $H^{\vee} \diamond H \cong H^{*} \otimes H$.
It turns out that $D(H)=H^{\vee} \diamond H$ is the Drinfeld double.
For any \mathcal{C}-actegory \mathcal{D} and any coalgebra C it makes sense to talk about the category ${ }^{C} \mathcal{D}$ of C-comodules in \mathcal{D}. Use this formalism to calculate

$$
D(H) \mathcal{M}={ }_{H^{\vee} \diamond H} \mathcal{M} \cong{ }_{H^{\vee}}\left({ }_{H} \mathcal{M}\right) \cong{ }^{H}\left({ }_{H} \mathcal{M}\right) \cong{ }^{H}\left({ }_{H} \mathcal{M}_{H}^{H}\right) \cong{ }_{H}^{H} \mathcal{M}_{H}^{H}
$$

and deduce that ${ }_{D(H)} \mathcal{M}$ is a monoidal category, hence $D(H)$ is a quasibialgebra.

