
A quasibialgebra H is an associative k-algebra equipped with a
non-coassociative comultiplication ∆: H → H ⊗H,
a counit ε : H → k, and an invertible element φ ∈ H ⊗H ⊗H

such that the category HM of left H-modules is a monoidal
category with respect to tensor product over k,

h · (v ⊗ w) = h(1)v ⊗ h(2)w for V,W ∈ HM, v ∈ V,w ∈ W

Φ: (U ⊗ V )⊗W → U ⊗ (V ⊗W )

u⊗ v ⊗ w 7→ φ·(u⊗ v ⊗ w)

= φ(1)u⊗ φ(2)v ⊗ φ(3)w
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The element φ, the associator, has to satisfy suitable axioms so
that we get a monoidal category as stated:

But we vow never to use these at all!!

...though they’re not hard to find, really:

(H ⊗∆)∆(h) · φ = φ · (∆⊗H)∆(h)

(H ⊗H ⊗∆)(φ) · (∆⊗H ⊗H)(φ)

= (1⊗ φ) · (H ⊗∆⊗H)(φ) · (φ⊗ 1)

(ε⊗H)∆(h) = h = (H ⊗ ε)∆(h)

(H ⊗ ε⊗H)(φ) = 1
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Why not use the axioms?

• Calculations with φ and the axioms are complicated and not
very conceptual.

• There’s extra notation for the “components”
φ = φ(1) ⊗ φ(2) ⊗ φ(3) and the inverse
φ−1 = φ(−1) ⊗ φ(−2) ⊗ φ(−3).

• Especially bad mess if we need several copies of φ...

• We can expect to get away without the mess!
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What shall we use instead?

We will use the monoidal category structure of HM, which ought
to contain all there is to know about the quasibialgebra H.
We will also use the monoidal category structure of HMH , where
the associator isomorphism is given by

Φ: (U ⊗ V )⊗W → U ⊗ (V ⊗W )

u⊗ v ⊗ w 7→ φ(u⊗ v ⊗ w)φ−1

= φ(1)uφ(−1) ⊗ φ(2)vφ(−2) ⊗ φ(3)wφ(−3).

(For once, we actually use the axioms of φ here.)
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The key observation:

H is a coassociative coalgebra within the monoidal category HMH .

This is nothing but the modified coassociativity axiom

(H ⊗∆)∆(h) = φ · (∆⊗H)∆(h) · φ−1

= Φ(∆⊗H)∆(h)

H
∆ //

∆

��

H ⊗H

∆⊗H

��
(H ⊗H)⊗H

Φ

vvmmmmmmmmmmmm

H ⊗H
H⊗∆ // H ⊗ (H ⊗H)
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First target, “classical” Hopf case

Theorem 1 (The structure theorem for Hopf modules). Let
H be a Hopf algebra.

A category equivalence Mk
∼= MH

H is given by

V 7→ V ⊗H•
•

Definition 2. A Hopf module M ∈ MH
H is a right H-module and

-comodule such that (mh)(0) ⊗ (mh)(1) = m(0)h(1) ⊗m(1)h(2) for
m ∈ M and h ∈ H.

Obviously, this makes no sense in the quasi-Hopf case.

Note, though, that the Hopf module condition says that

M → M• ⊗H• is an H-module map,

or shorter: M is an H-comodule in MH .
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(Quasi-)Hopf (bi-)modules

Definition 3. Let H be a quasi-bialgebra.
A Hopf module in HMH

H is an H-comodule within the monoidal
category HMH .

Theorem 4. Let H be a finite quasi-bialgebra.
The following are equivalent:

1. H is a quasi-Hopf algebra.

2. The functor R : HM→ HMH
H is a category equivalence.

3. The category HMf.d. of finite left H-modules is rigid.

(1)⇒(3) is already in Drinfeld (without “finite”).

(1)⇒(2) is due to Hausser and Nill (without “finite”).

(3)⇒(1) for bialgebras is due to Ulbrich.

We shall discuss (2)⇔(3)⇒(1), but first...
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The dual case

It goes without saying that there is a dual notion of a
coquasibialgebra, involving φ : H ⊗H ⊗H → k instead of
φ ∈ H ⊗H ⊗H, and a nonassociative multiplication in place of a
non-coassociative comultiplication.

For a coquasibialgebra H, both MH and HMH are monoidal
categories,

H is an associative algebra in HMH ,

one can define Hopf modules in H
HMH ,

and a functor L : MH → H
HMH .
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Theorem 4*: Let H be a coquasibialgebra.
The following are equivalent:

1. H is a coquasi-Hopf algebra.

2. The functor L : MH → H
HMH is a category equivalence.

3. The category MH
f.d. of finite right H-comodules is rigid.

(1)⇒(3) is formally dual to Drinfeld.

(3)⇒(1) is due to Ulbrich for bialgebras.

(1)⇒(2) can be proved by arguments formally dual to those of
Hausser and Nill.

(2)⇔(3) can be proved by formally dual arguments to those we
shall give below for Theorem 4.

But (3)⇒(1) is false for dim H = ∞.
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Recall that a monoidal category C is rigid if for all V ∈ C there
exists a dual object (V ∨, ev,db),

where V ∨ ∈ C, ev : V ∨ ⊗ V → I and db: I → V ⊗ V ∨ satisfy(
V

db⊗V−−−−→ (V ⊗ V ∨)⊗ V
Φ−→ V ⊗ (V ∨ ⊗ V ) V⊗ev−−−−→ V

)
= id(

V ∨ V ∨⊗db−−−−−→ V ∨ ⊗ (V ⊗ V ∨) Φ−→ (V ∨ ⊗ V )⊗ V ∨ ev⊗V ∨

−−−−−→ V ∨
)

= id

A quasiantipode for a quasibialgebra H is a triple (S, α, β) where
S is an algebra anti-endomorphism of H and α, β ∈ H satisfy

S(h(1))αh(2) = ε(h)α h(1)βS(h(2)) = ε(h)β

φ(1)βS(φ(2))αφ(3) = 1 S(φ(−1))αφ(−2)βφ(−3) = 1

The definition of a coquasi-Hopf algebra is, of course, formally dual!
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If H is a quasi-Hopf algebra (i.e. has a quasiantipode) then
V ∈ HMf.d. has left dual V ∨ = V ∗ with module structure via S,
evaluation and coevaluation

V ∗ ⊗ V → k k → V ⊗ V ∗

ϕ⊗ v 7→ ϕ(αv) 1 → βvi ⊗ vi

In particular, HMf.d. is rigid when H is a quasi-Hopf algebra, and
dim(V ∨) = dim(V ) for all V ∈ HMf.d..

Of course, the same holds true for coquasi-Hopf algebras!

However, there is an example of a coquasibialgebra H such that
MH

f.d. is rigid, and there is V ∈MH
f.d. with dim(V ∨) 6= dim(V ).

In particular, H is not a coquasi-Hopf algebra.
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...now, back to business!

To prepare for Theorem 4 we have to establish a nice functor

R : HM→ HMH
H

...by just using generalities on monoidal categories:
Since H is a coalgebra in the monoidal category HMH ,
the underlying functor HMH

H → HMH

forgetting the comodule structure of an H-comodule in HMH

has a right adjoint.

•P• 7→ •P• ⊗ •H
•
•

R := ( HM → HMH
R̃→ HMH

H)

V 7→ •Vε 7→ •V ⊗ •H
•
•
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Now we will sketch a proof of

Theorem 5. Let H be a finite quasibialgebra. Then the following
are equivalent:

1. The functor R : HM→ HMH
H is an equivalence.

2. The category HMf.d. is rigid.

• We start by an observation on HMH
H which is not a general

categorical fact. The category HMH
H is a monoidal category

with respect to the tensor product over H; i.e. for
M,N ∈ HMH

H we have M ⊗H N ∈ HMH
H with the codiagonal

comodule structure. The associator is trivial!

• Moreover, the functor R is a monoidal functor. More generally
R(V ) ⊗H M ∼= (V ⊗H) ⊗H M ∼= •V ⊗ •M

•
•

for all V ∈ HM and M ∈ HMH
H . Really!
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• It is easy to check that R is fully faithful and exact. So the
question is whether it is essentially surjective. The image of R
is closed under limits, colimits, and tensor products.

• We can form cotensor products in the monoidal category
C = HMH . So for M ∈ HMH

H we have M ∼= M �H H which
amounts to an equalizer

0 → •M
•
• → •M• ⊗ •H

•
• ⇒ (•M• ⊗ •H•)⊗ •H

•
•

Thus we need only know when objects of the form P ⊗H with
P ∈ HMH , are in the image of R.
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• For P ∈ HMH we have P ∼= P ⊗H H; that is, we have a
coequalizer

•P ⊗H ⊗H• ⇒ •P ⊗H• → •P• → 0.

So we need only check when P ⊗H is in the image of R in the
case P = •V ⊗ U• for V ∈ HM and U ∈MH .
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• Since (•V ⊗ U•)⊗ •H
•
•
∼= (•V ⊗ •H

•
• ) ⊗H (U• ⊗ •H

•
• ) and R is

monoidal, we actually need only check that U• ⊗ •H
•
• is in the

image of R when U ∈MH .

• We may assume U is finite-dimensional, so U = V ∗ for some
V ∈ HMf.d..

Claim: All such V ∗ ⊗H are in the image of R iff HMf.d. is rigid.

To prove this, one shows that V ∗ ⊗H is something’s dual.
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Lemma: Let V ∈ HMf.d.. Then (V ∗)• ⊗ •H
•
• is a dual object of

•V ⊗ •H
•
• in HMH

H . Evaluation and coevaluation are given
according to the identification

V ∗ ⊗H ∼= Hom−H(V ⊗H,H)

of V ∗ ⊗H with the dual of the finitely generated projective right
H-module V ⊗H.

End of proof of Theorem 5: If V ∈ HMf.d. has a dual V ∨, then
V ∗ ⊗H ∼= R(V ∨), since monoidal functors preserve duals.

If R is an equivalence, the Lemma shows that any finite
M ∈ HMH

H has a dual, hence so does any V ∈ HMf.d..
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If H is a quasi-Hopf algebra, we learn more from the proof: In this
case, for V ∈ HM and U = V ∗ ∈MH we have V ∨ = SU , hence
U• ⊗ •H

•
•
∼= R(SU) , and further, for V ∈ HM,

(•V ⊗ U•)⊗ •H
•
•
∼= (•V ⊗ •H

•
• ) ⊗

H
(U• ⊗ •H

•
• )

∼= R(V ) ⊗
H
R(SU)

∼= R(V ⊗ SU)
∼= R(ad(•V ⊗ U•))

Where, for P ∈ HMH , we define adP ∈ HM to have the action
h ⇀ p = h(1)pS(h(2)). More generally, we see that

•P• ⊗ •H
•
•
∼= R(adP )
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Next target: The Double

...first, the ordinary Hopf picture:

If H is a finite Hopf algebra, its double D(H) is a quasitriangular
Hopf algebra, with underlying vector space H∗ ⊗H.

The module category D(H)M is isomorphic to the center Z(HM).

By definition, objects of Z(C) are objects of C plus a specified way
of commuting them past objects of C.

So Z(HM) 3 (V, σV,–), where σV X : V ⊗X → X ⊗ V is an
isomorphism, natural in X ∈ HM. There are axioms, of course!

Without axioms, any σV,– as above has to have the form

σV X : V ⊗X 3 v ⊗ x 7→ v(−1) · x⊗ v(0) ∈ X ⊗ V

For some “coaction” V 3 v 7→ v(−1) ⊗ v(0) ∈ H ⊗ V .
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To actually define an object in Z(HM), the “coaction” has to turn
V into a Yetter-Drinfeld module V ∈ H

HYD.

To get from here to the center, one turns the coaction into an
action of H∗.
And one turns the Yetter-Drinfeld condition into a commutation
relation between the actions of H and H∗.
And one turns this into the definition of an algebra structure on
H∗ ⊗H. ....and that’s the Drinfeld double.

There’s an obvious reason why it can’t work like that in the
quasi-Hopf case:

H∗ isn’t even an associative algebra.

So how is it going to embed into an associative H∗ ⊗H?

...of course one can try...
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In fact everything works just fine in the quasi-Hopf case, except for
the last two steps. Even the Yetter-Drinfeld condition stays the
same:

h(1)v(−1) ⊗ h(2)v(0) = (h(1)v)(−1)h(2) ⊗ (h(1)v)(0).

In the Hopf case, one turns this into

h(1)v(−1)S(h(3))⊗ h(2)v(0) (hv)(−1) ⊗ (hv)(0)

coact first

OO

act first

OO

That won’t work for the quasi-Hopf case (Antipodes are too
complicated)

However, everything has been fixed by Hausser and Nill...by rather
unwieldy calculations.

We’ll do an approach with less calculations and more categories...
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Let C be a monoidal category. A C-actegory is a category D on
which C acts. This means that there is a functor � : C × D → D and
a natural isomorphism Ψ: (P ⊗Q) � V → P � (Q � V ), where
P,Q ∈ C and V ∈ D, which is coherent.

If C is a coalgebra in C, then surely the comodule category CC is a
C-actegory. Just take P � V = P ⊗ V •.

So in particular HMH
H is a HMH -actegory.

But HMH
H
∼= HM, so HM is a HMH -actegory, too.

The action � comes via the equivalence, so, for
P ∈ HMH , V ∈ HM,

R(P � V )∼= P ⊗R(V )∼= P ⊗ (V ⊗H)
∼= (P ⊗ V )⊗H∼= R(ad(P ⊗ V ))

and P � V ∼= ad(P ⊗ V ).
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We can turn the action into a “representation”, a monoidal functor

HMH
//

P 7→P�H

((
Fun(HM, HM) oo ∼

Watts
HMH

tensor product

over k with

nontrivial associator

OO

tensor product

over H with

trivial associator

OO

This will turn any (co)algebra in HMH (a non-(co)associative
ordinary (co)algebra) into a (co)algebra in HMH , or an H-(co)ring.
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In particular, this applies to the coalgebra H ∈ HMH , giving an
H-coring H �H.

Or to the algebra H∨ ∼= H∗ ∈ HMH , giving an H-ring and hence
k-algebra H∨ �H ∼= H∗ ⊗H.

It turns out that D(H) = H∨ �H is the Drinfeld double.

For any C-actegory D and any coalgebra C it makes sense to talk
about the category CD of C-comodules in D. Use this formalism to
calculate

D(H)M = H∨�HM∼= H∨(HM) ∼= H(HM) ∼= H(HMH
H) ∼= H

HMH
H

and deduce that D(H)M is a monoidal category, hence D(H) is a
quasibialgebra.
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