A quasibialgebra H is an associative k-algebra equipped with a
non-coassociative comultiplication A: H — H ® H,
a counit €: H — k, and an invertible element ¢ € H @ H ® H

such that the category g M of left H-modules is a monoidal
category with respect to tensor product over k,

h-(v®w)=hav®hgwfor VVIWe pM,ve V,w e W

o (U V)W —Us (VeWw)
URVR W O (u®v®w)




The element ¢, the associator, has to satisfy suitable axioms so
that we get a monoidal category as stated:

But we vow never to use these at alll!

...though they’re not hard to find, really:

(H®A)A(h) - ¢ =¢- (A® H)A(h)

(Ho HoA)(9) (Ao He H)(¢)
=(1®e¢) (HoARH)(¢) (6®1)

(e®@ H)A(h) =h=(H ®¢)A(h)
(H®ex H)(¢p) =1




Why not use the axioms?

e (Calculations with ¢ and the axioms are complicated and not

very conceptual.

e There’s extra notation for the “components”

¢ = Cb(l) & ¢(2) ® qb(g) and the inverse
ot =D @ ¢(=2) @ (=3,

e Especially bad mess if we need several copies of ¢...

e We can expect to get away without the mess!




What shall we use instead?

We will use the monoidal category structure of g M, which ought
to contain all there is to know about the quasibialgebra H.
We will also use the monoidal category structure of g Mg, where

the associator isomorphism is given by

O: (UV)aW -U(VeW)

URUVWi— d(UQ@vwWw)d "
= dWud ™Y @ 6P (=2 @ P we( ),

(For once, we actually use the axioms of ¢ here.)




The key observation:

H is a coassociative coalgebra within the monoidal category g M.

This is nothing but the modified coassociativity axiom

(Ho A)A(R) =¢- (A® H)A) - ¢
= &(A® H)A(h)

H®H

|asir




First target, “classical” Hopf case

Theorem 1 (The structure theorem for Hopf modules). Let
H be a Hopf algebra.

A category equivalence My, = ME is given by

V—=V®H
Definition 2. A Hopf module M € M% is a right H-module and

-comodule such that (mh)(()) & (mh)(l) = m(o)h(l) & m(l)h(g) for
m € M and h € H.

Obviously, this makes no sense in the quasi-Hopf case.
Note, though, that the Hopf module condition says that
M — M, ® H, is an H-module map,

or shorter: M is an H-comodule in Mg.




(Quasi-)Hopf (bi-)modules
Definition 3. Let H be a quasi-bialgebra.
A Hopf module in ;M is an H-comodule within the monoidal
category yMpy.
Theorem 4. Let H be a finite quasi-bialgebra.

The following are equivalent:

1. H is a quasi-Hopf algebra.

2. The functor R: gM — 5z M3} is a category equivalence.

3. The category g M;. q. of finite left H-modules is rig:id.
(1)=(3) is already in Drinfeld (without “finite”).
(1)=>(2) is due to Hausser and Nill (without “finite”).
(3)=-(1) for bialgebras is due to Ulbrich.

We shall discuss (2)<(3)=>(1), but first...




The dual case

It goes without saying that there is a dual notion of a
coquasibialgebra, involving ¢: H ® H ® H — k instead of
¢ € H® H® H, and a nonassociative multiplication in place of a

non-coassociative comultiplication.

For a coquasibialgebra H, both M* and ¥ M are monoidal

categories,

H is an associative algebra in # M,

one can define Hopf modules in ¥ M*#

and a functor £: MY — B MH.




Theorem 4*: Let H be a coquasibialgebra.

The following are equivalent:

1. H is a coquasi-Hopf algebra.

2. The functor L: M7 — L MH s a category equivalence.
3. The category /\/lfd. of finite right H-comodules is rigid.

1)=-(3) is formally dual to Drinfeld.

(1)
(3)=-(1) is due to Ulbrich for bialgebras.
(1)

1)=-(2) can be proved by arguments formally dual to those of

Hausser and Nill.

(2)<(3) can be proved by formally dual arguments to those we

shall give below for Theorem 4.

But (3)=(1) is false for dim H = oo.




Recall that a monoidal category C is rigid if for all V' € C there
exists a dual object (VV, ev,db),

where VV e C,ev: VV RV - Tand db: I -V ® VY satisfy

V®ev

(V LE, Vev)eV Ve (VYeV) 2% V):id

(VV Vel yvewvevY)E e v)e vy 28V VV) —id

A quasiantipode for a quasibialgebra H is a triple (5, a, 3) where
S is an algebra anti-endomorphism of H and «, 5 € H satisty

S(h@y)ahz) = e(h)a h)BS(h2)) = e(h)B
o138 (6)agt =1 S(¢'™)ag! =P pp ) =1

The definition of a coquasi-Hopf algebra is, of course, formally dual!




If H is a quasi-Hopf algebra (i.e. has a quasiantipode) then
V € gM; 4. has left dual V'V = V* with module structure via S,

evaluation and coevaluation

VeV —k k—-VeV"

@ v p(aw) 1 — v @'

In particular, g My 4. is rigid when H is a quasi-Hopf algebra, and
dim(VY) = dim(V) for all V € gM;q..

Of course, the same holds true for coquasi-Hopf algebras!

However, there is an example of a coquasibialgebra H such that

M, is rigid, and there is V- € M{; with dim(V") # dim(V).

In particular, H is not a coquasi-Hopf algebra.
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...now, back to business!

To prepare for Theorem (4| we have to establish a nice functor

...by just using generalities on monoidal categories:

Since H is a coalgebra in the monoidal category g Mgy,

the underlying functor ;M3 — g My

forgetting the comodule structure of an H-comodule in g Mg

has a right adjoint.

oPo ® .H:
M)
VR JH?




Now we will sketch a proof of

Theorem 5. Let H be a finite quasibialgebra. Then the following

are equivalent:
1. The functor R: gM — 5 M1k is an equivalence.
2. The category gM;.q. is rigid.

e We start by an observation on M which is not a general

categorical fact. The category ;MH% is a monoidal category

with respect to the tensor product over H; i.e. for
M,N € y M we have M @y N € ;M7 with the codiagonal

comodule structure. The associator is trivial!

Moreover, the functor R is a monoidal functor. More generally
RV)g M= (VRH)®yg M=2,V& , M:
for all V € gyM and M € zME . Really!




e It is easy to check that R is fully faithful and exact. So the
question is whether it is essentially surjective. The image of R

is closed under limits, colimits, and tensor products.

e We can form cotensor products in the monoidal category
C =pgMp. So for M € ;M we have M = M Oy H which

amounts to an equalizer
O — .M: — oMo ® .H: j (oMo ® .H.) ® .H:

Thus we need only know when objects of the form P ® H with
P € gyMpyg, are in the image of R.




e For P € yMpyg we have P = P ®y H; that is, we have a

coequalizer

LFOYH®H, = ,PRH, — ,P, — 0.

So we need only check when P ® H is in the image of R in the
case P=, VU, for Ve gMand U € My.




e Since (V U, ® H: = (,V® . H)®y (U, ® H?) and R is
monoidal, we actually need only check that U, ® ,H? is in the
image of R when U € My.

e We may assume U is finite-dimensional, so U = V* for some

VengMia..
Claim: All such V* ® H are in the image of R iff gy M 4. is rigid.

To prove this, one shows that V* @ H is something’s dual.




Lemma: Let V € gy M q.. Then (V*), ® ,H? is a dual object of
V@ H! in ;ME. Evaluation and coevaluation are given

according to the identification

V*® H=Hom_gx(V®H H)
of V* ® H with the dual of the finitely generated projective right
H-module V ® H.

End of proof of Theorem 5: If V € g M4 has a dual V'V, then
V*® H =2 R(VY), since monoidal functors preserve duals.

If 'R is an equivalence, the Lemma shows that any finite
M e H/\/lg has a dual, hence so does any V € g M; 4.




If H is a quasi-Hopf algebra, we learn more from the proof: In this
case, for Ve gM and U = V* € My we have VYV = gU, hence
U, ® H: =2 R(sU) , and further, for V € g M,

WVel,)® H=(V®. 1) @ (U, ® JH?)
s R(V) %) R(SU)

>~ R(V®sU)
g R(ad(ov ® Uo))
Where, for P € g My, we define ,qP € g M to have the action

h — p = h)pS(h(2)). More generally, we see that
oPo ® .H: g R(adP>




Next target: The Double

...first, the ordinary Hopf picture:

If H is a finite Hopf algebra, its double D(H) is a quasitriangular
Hopft algebra, with underlying vector space H* ® H.

The module category p(myM is isomorphic to the center Z(zM).

By definition, objects of Z(C) are objects of C plus a specified way

of commuting them past objects of C.

So Z(gM) > (V,oy-), where oyx: VX - X®V is an

isomorphism, natural in X € g M. There are axioms, of course!

Without axioms, any oy, as above has to have the form
oyx: VRAX30Qxr—v_) - xQup € XV

For some “coaction” V3 v—v_) Qv € HRV.




To actually define an object in Z(gM), the “coaction” has to turn
V into a Yetter-Drinfeld module V & gyD.

To get from here to the center, one turns the coaction into an
action of H*.

And one turns the Yetter-Drinfeld condition into a commutation
relation between the actions of H and H~*.

And one turns this into the definition of an algebra structure on
H* ® H. ....and that’s the Drinfeld double.

There’s an obvious reason why it can’t work like that in the

quasi-Hopf case:
H™ isn’t even an associative algebra.

So how is it going to embed into an associative H* @ H?




In fact everything works just fine in the quasi-Hopf case, except for
the last two steps. Even the Yetter-Drinfeld condition stays the

Salne:

hayv(-1) ® hz)v) = (ha)v)(-1)h2) ® (h1)v)(0)-

In the Hopf case, one turns this into

hayv-1)S(h@a)) @ h)yv(o) (hv)(~1) ® (hv)(0)
A A

coact first act first

That won’t work for the quasi-Hopf case (Antipodes are too
complicated)

However, everything has been fixed by Hausser and Nill...by rather

unwieldy calculations.

We’ll do an approach with less calculations and more categories...




Let C be a monoidal category. A C-actegory is a category D on
which C acts. This means that there is a functor ¢: C x D — D and
a natural isomorphism W: (P ® Q)¢ V — Po (Q o V), where

P,Q) € C and V € D, which is coherent.

If C is a coalgebra in C, then surely the comodule category C¢ is a
C-actegory. Just take PoV =P ® V*.

So in particular ;M is a y M g-actegory.

But H./\/lH >~ gM, so gM is a g M pg-actegory, too.

The action ¢ comes via the equivalence, so, for

P € HMH,VE H./\/l,

R(PoV)ZPoR(V)=P® (Ve H)
= (PRV)® HEZR(a(P®V))

and PoV 2 (P V).




We can turn the action into a “representation”, a monoidal functor

tensor product tensor product
over k with over H with

nontrivial associator trivial associato

This will turn any (co)algebra in g My (a non-(co)associative

ordinary (co)algebra) into a (co)algebra in g Mg, or an H-(co)ring.




In particular, this applies to the coalgebra H € g My, giving an
H-coring H ¢ H.

Or to the algebra HY = H* € g My, giving an H-ring and hence
k-algebra HY o H =~ H* ® H.

It turns out that D(H) = HY ¢ H is the Drinfeld double.

For any C-actegory D and any coalgebra C' it makes sense to talk

about the category ¢D of C-comodules in D. Use this formalism to
calculate

p(yM = gvorM = gv(gM) = TgM) = (pMy) = pMy

and deduce that p(zyM is a monoidal category, hence D(H) is a

quasibialgebra.




