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Theorem (Fundamental Theorem). Let F

be a field and let E ⊇ F be a finite, normal,

separable field extension. Let G = AutF (E) be

the group of field automorphisms of E fixing F .

Then G is a finite group and there is a bijection

between the the set of subgroups of G, and the

set of subfields of E containing F , under which

a subgroup H corresponds to the subfield EH

of E fixed element–wise by H and the subfield

K corresponds to the subgroup AutK(E)of G

which fixes each element of K.
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Theorem. Let E ⊇ F be a finite, normal, sep-

arable field extension. Let G = AutF (E) and

let C(G, E) be the ring of E valued functions

on G. Then the map

Φ : E⊗FE → C(G, E) by Φ(a⊗b)(σ) = aσ(b)

is a ring ismorphism.

Consequently,

1. EG = F ; and

2. If H ≤ G and EH = F then H = G
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Theorem (Fundamental Theorm in Ten-

sor Product Form). Let E ⊇ F be a finite,

normal, separable field extension. Then there

is a bijection between the set of intermedi-

ate fields K between F and E, and the set of

(isomorphism classes of) quotient E-algebras

E ⊗F E → B which satisfy

E⊗F E → B factors through the multiplication

map E ⊗F E → E

There is a (necessarily unique) map κ : B → B

such that the following diagram commutes:

E ⊗F E
i−→ E ⊗F Ey

y
B

κ−→ B

where i is induced from a⊗ b 7→ b⊗ a;
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There is a (necessarily unique) map ∆ : B →
B ⊗E B such that the following diagram com-

mutes:

E ⊗F E
D−→ (E ⊗F E)⊗E (E ⊗F E)y

y

B
∆−→ B ⊗E B

where the top map D is induced from a⊗ b 7→
(a⊗ 1)⊗ (1⊗ b).

The intermediate field K leads to the quotient

algebra E ⊗K E and the quotient algebra B

leads to the field K which the kernel of the

map ∂B : E → B given by a 7→ a ⊗ 1 − 1 ⊗ a

followed by the quotient map.



Definition 1. An equivalence relation on an
object X in the category S of sets is a sub-
object of X ×f X represented by the injection
r : R → X ×f X plus maps d and t such that

1. The diagonal map ∆ : X → X ×f X factors
through R → X ×f X via a map d : X → R

with rd = ∆ (reflexive)

2. If σ : X ×f X → X ×f X is the interchange
of factors map, then both σr : R → X ×f X

and r : R → X ×f X represent the same
subobject: that is, there is an isomorphism
s : R → R such that sr = σr (symmetric)

3. If

τ : (X ×f X)Xp2,p1(X ×f X) → X ×f X

is the map induced from the morphisms

X ×f X ⇒ X
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by projection onto the factors, and

(r, r) : R×p2r,p1rR → (X×fX)Xp2,p1(X×fX)

is the induced map on the fibre products

then R → X×fX factors through τ(r, r) via

a map

t : R → R×p2r,p1r R

with τ(r, r)t = r. (transitive)



Simplify: replace subobject map r : R → X×fX

by the pair of maps R ⇒ X compose r with

the projection pi on the factors of the fibre

product. Then the equivalence relation is a

tuple

(R ⇒ X, d : X → R, s : R → R, t : R → R×p2r,p1rR).
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Definition 2. A quotient X/R of object X in

the category S of sets by an equivalence R on

X is a quotient object of X represented by a

surjection p : X → X/R such that

1. The maps R ⇒ X/R by ppir, i = 1,2 coin-

cide.

2. If q : X → Y is any map such that qp1r =

qp2r then there is a map q : X/R → Y such

that q = qp.
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E ⊇ F is a field extension, equivalence relation

on AlgF (E, ·) is a subfunctor of

AlgF (E, ·)×f AlgF (E, ·) ∼= AlgF (E ⊗F E, ·)
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Representable by an algebra B: given by sur-

jection E ⊗F E → B (specified by the pair of

maps E ⇒ B, using the injections E ⇒ E ⊗F E

of the tensor product)
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The conditions the surjection must satisfy to

give an equivalence relation then translate into

maps and diagrams involving B, this pair of

maps, and the maps B → E (corresponding to

d), B → B (corresponding to s), and B⊗E B →
B (corresponding to t). These maps, and the

conditions they meet, are identical to the ones

identified above in the tensor product form of

the Fundamental Theorem (where the maps

corresponding to s and t were termed κ and ∆

respectively).
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The quotient of the equivalence relation rep-

resented by B (if it exists) is a difference cok-

ernel of R ⇒ X; if it is representable, it would

be represented by the difference kernel of the

corresponding maps E ⇒ B. The correspond-

ing maps are induced by the injections into the

tensor product followed by the projection on B

and the difference kernel of these is precisely

the kernel of the map ∂B of the tensor product

form of the Fundamental Theorem.
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In other words, the Fundamental theorem in

tensor product form, after passage to the cat-

egory of set–valued functors, is precisely the

(functorialized) correspondence between equiv-

alence relations and quotients. Notice what

has happened: the deep Fundamental Theo-

rem of Galois Theory of Fields (in tensor prod-

uct form) translates into the transparent cor-

respondence between equivalence relations and

quotients on sets.
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F denotes a differential field of characteristic
zero with derivation D = DF and algebraically
closed field of constants C.

E ⊃ F is a Picard–Vessiot, or Differential Ga-
lois extension for an order n monic linear ho-
mogeneous differential operator

L = Y (n) + an−1Y (n−1) + · · ·+ a1Y (1) + a0Y

ai ∈ F if

1. E is a differential field extension of F gen-
erated over F by V = {y ∈ E | L(y) = 0}

2. The constants of E are those of F (“no
new constants”)

3. dimC(V ) = n (“full set of solutions”)
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E ⊃ F is an infinite Picard–Vessiot extension
if it is a union of Picard–Vessiot extensions of
F .

∃ differential Galois theory for infinite Picard–
Vessiot extensions due to Kovavcic: Pro-algebraic
groups and the Galois theory of differential
fields, Amer. J. Math. 95 (1973), pages 507–
536.

Fundamental Theorem for Infinite Picard–Vessiot
Extensions Let E ⊃ F be an infinite Picard–
Vessiot extension. Then G = G(E/F ) has
a canonical structure of proaffine group and
there is a one-one lattice inverting correspon-
dence between differential subfields K, E ⊃
K ⊃ F , and Zariski closed subgroups H of G

given by K 7→ G(E/K) and H 7→ KH. If K is
itself an infinite Picard–Vessiot extension, then
the restriction map G → G(K/F ) is a surjection
with kernel G(E/K). If H is normal in G, then
KH is an infinite Picard–Vessiot extension.
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Theorem 1.There is an infinite Picard–Vessiot

extension E0 of F which contains an isomor-

phic copy of every Picard–Vessiot extension of

F and is the unique (up to isomorphism) in-

finite Picard–Vessiot extension of F with this

property.

complete Picard–Vessiot Compositum

Differential automorphisms of the base field

lift to differential automorphisms of a Picard–

Vessiot compositum. The Picard–Vessiot com-

positum of F can have proper Picard–Vessiot

extensions, and hence a proper Picard–Vessiot

compositum.
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K0 = F

If Ki has a proper Picard–Vessiot extension,

then Ki+1 ⊃ Ki is a Picard–Vessiot composi-

tum. (The chain K0 ⊂ K1 ⊂ . . . may be finite

or infinite.)

Let K∞ denote the union of the chain whether

it is finite or infinite.

Gi, i ≤ ∞, denotes the group of differential

automorphisms of Ki over F

K∞ has no proper Picard–Vessiot extensions.
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G∞ is differential automorphisms of K∞ over

F .

G∞ = lim←−Gi, with the projection maps pi :

G∞ → Gi surjective and given by restriction.

For i < ∞, the kernel of Gi+1 → Gi is proaffine

proalgebraic.

{e} = Ker(pi,i) ⊂ Ker(pi,i−1) · · · ⊂ Ker(pi,0) =

Gi is normal series for Gi with proaffine proal-

gebraic layers.
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EXAMPLES SHOW THAT THE GROUPS

Gi NEED NOT THEMSELVES, HOWEVER,

BE PROALGEBRAIC.
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An element y of a differential extension E ⊃ F

will be called an antiderivative if y′ ∈ F . E ⊃
F will be called an antiderivative extension if

there are elements y1, . . . , yn in E which differ-

entially generate E over F and such that each

y′i belongs to the differential field generated

over F by y1, . . . , yi−1. If n = 1, the antideriva-

tive extension will be called simple.

Facts: an antiderivative extension is generated

as a field, and not just as a differential field,

by the elements y1, . . . , yn; a proper simple an-

tiderivative extension without new constants

is a Picard–Vessiot extension with differential

Galois group the additive group Ga; and there-

fore any antiderivative extension without new

constants is a tower of Ga Picard–Vessiot ex-

tensions.
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An antiderivative extension K ⊃ F with no
new constants is a Liouville extension and any
Picard–Vessiot extension E ⊃ F which embeds
in K ⊃ F is then seen to be itself an antideriva-
tive extension with unipotent differntial Galois
group. Conversely, a Picard–Vessiot exten-
sion with unipotent differential Galois group is
seen to be an antiderivative extension, so that
“Picard–Vessiott antiderivative extension” is the
same as “differential Galois with unipotent dif-
ferential Galois group”.

Complete Picard–Vessiot antiderivative com-
posita: an infinite Picard–Vessiot extension K0 ⊃
F such that K0 is the union of its Picard–
Vessiot subextensions with unipotent differen-
tial Galois group, and K0 contains a copy of ev-
ery Picard–Vessiot antiderivative extension of
F .

Picard-Vessiot Antiderivative Closure
(abbreviation: PVAC) of F .
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Theorem 2. let E0 ⊃ F be a complete Picard–

Vessiot compositum, and let H be the minimal

closed normal subgroup of G(E0/F ) such that

G(E0/F )/H is prounipotent. Then K0 = EH
0

is a Picard–Vessiot antiderivative closure of F ,

and any Picard–Vessiot antiderivative closure

of F is isomorphic to K0. If σ is any differen-

tial automorphism of F , there is a differential

automorphism Σ of K0 whose restriction to F

is σ.
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Suppose that K ⊃ F is a Picard–Vessiot an-

tiderivative extension and

1 → Ga → G → G(K/F ) → 1

is an extension of unipotent groups. If there

is a Picard–Vessiot extension E ⊃ F contain-

ing K such that G(E/F ) is isomorphic to G

so that the restriction G(E/F ) → G(K/F ) is

equivalent to the given map G → G(K/F ) then

we will say that E solves the lifting problem

for G → G(K/F ). F has the lifting property

with respect to extensions of unipotents by Ga

(or just lifting property) if every lifting problem

has a solution.
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Theorem 3. C(t) has the lifting property with

respect to extensions of unipotents.

C(t) has the further property that every unipo-

tent algebraic group over C , in fact every con-

nected algebraic group, appears as the differ-

ential Galois group of a Picard–Vessiot exten-

sion of C(t). A field F with this property is said

to have the (unipotent) inverse Galois prop-

erty.
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If F is any field with the lifting property, by

taking a Picard–Vessiot antiderivative closure

E0 ⊃ F and applying the Fundamental The-

orem to G(E0/F ) we can conclude a lifting

property for this prounipotent group:

Proposition 1. Let F have the lifting property

with respect to prounipotent extensions. Let

E0 be a Picard–Vessiot antiderivative closure

of F . Suppose that

1 → Ga → G → G → 1

is an exact sequence of unipotent groups. In

addition, suppose there is a surjection G(E0/F ) →
G. Then it lifts to a homomorphism G(E0/F ) →
G.
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Proposition 2. Let U be a prounipotent group

over the algebraically closed characteristic zero

field k, and suppose that for every extension of

k unipotent groups

1 → Ga → G → G → 1

such that there is a surjection U → G there is

a lifting of the surjection to U → G. Then U

is free prounipotent.

Theorem 4. Let E0 be a Picard–Vessiot an-

tiderivative closure of the rational function field

F = C(t). then the differential Galois group

G(E0/F ) is a free prounipotent group.

Defined groups Hi for the tower of Picard–

Vessiot antiderivative closures of C(t).

EPIMORPHISM H2 → H1 DOESN’T SPLIT!
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