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1. Survey of descent theory
The problem of descent theory

B → A an extension of (commutative) rings.
1) N an “object” (module, algebra,...) defined
over A
Does there exist an object M over B such that
M ⊗B A ∼= N?
2) Classify all these forms.

1) Galois descent theory (Serre, LNM 5, 1965)
l/k Galois field extension.
N descends to M iff there exists a Galois de-
scent datum:

ϕ : G → Autk(N) with ϕ(σ) σ-semilinear

The descended module is M = NG.

2) Grothendieck (1959): descent theory for
schemes



3) Knus-Ojangruren (LNM 389, 1974): affine
version of Grothendieck descent.
Let i : B → A be a morphism of commutative
rings.
Descent datum: (N, g), with N ∈ NA and

g : A⊗B N → N ⊗B A in MA⊗BA

such that

g2 = g3 ◦ g1 : A⊗B A⊗B N → N ⊗B A⊗B A

µN(g(1⊗B m)) = m

Adjoint pair of functors (F, G) between MB
and Desc(A/B).

G(N, g) = {n ∈ N | g(1⊗ n) = n⊗ 1}

Equivalence of categories if and only if B →
A is pure as a morphism of B-modules. A/B
faithfully flat is a sufficient condition.



4) Cippola (Discesa fedelmente piatta dei mod-
uli, 1976), Ph. Nuss (1997)
i : B → A be a morphism of noncommutative
rings.
“Descent datum”: (N, ρ) with N ∈ MA, ρ :
N → N ⊗B A such that, with

ρ(n) =
∑

i
ni ⊗ ai

∑

i
niai = n ;

∑

i
ρ(mi)⊗ ai =

∑

i
ni ⊗ 1⊗ ai

Again we have an adjoint pair of functors be-
tween MB and Desc(A/B). It is an equivalence
if A/B is faithfully flat.

5) Graded ring theory
Let A be a G-graded module, and Ae = B. We
have an adjoint pair of funtors between MB
and grGA. It is an equivalence if and only if A is
strongly graded.



6) H a Hopf algebra, A an H-comodule alge-
bra, B = AcoH. Relative Hopf module N

ρ(nh) = ρ(n)ρ(h)

We have an adjoint pair of functors between
MB and MH

A .
A is an H-Galois extension of B if

can : A⊗B A → A⊗H

can(a⊗ a′) = aρ(a′) = aa′[0] ⊗ a′[1]

is an isomorphism. If moreover A/B is faith-
fully flat, then we have an equivalence of cat-
egories.

7) Brzeziński and Majid introduced the notion
of coalgebra Galois extension (1996).



2. Generalized Hopf modules
Doi-Hopf modules (Doi-Koppinen 1992-1995)
Let

• H a Hopf algebra

• A a (right) H-comodule algebra

• C a (right) H-module coalgebra

N is called a Doi-Hopf module if C coacts on
M , A acts on N , and

ρ(na) = n[0]a[0] ⊗ n[1]a[1]

Special cases: modules, comodules, (relative)
Hopf modules, graded modules, Yetter-Drinfeld
modules.



Entwined modules (Brzeziński-Majid (1996)
Let A be an algebra, C a coalgebra, and ψ :
C ⊗A → A⊗ C. Write

ψ(c⊗ a) = aψ ⊗ cψ = aΨ ⊗ cΨ

(ab)ψ ⊗ cψ = aψbΨ ⊗ cψΨ

1ψ ⊗ cψ = 1⊗ c

aψ ⊗∆(cψ) = aψΨ ⊗ cΨ(1) ⊗ cψ
(2)

ε(cψ)aψ = ε(c)a

(A, C, ψ) is called a right-right entwining struc-
ture. N is called an entwined module if

ρ(na) = n[0]aψ ⊗ nψ
[1]

Doi-Hopf modules are a special case:

ψ : C ⊗A → A⊗ C, ψ(c⊗ a) = a[0] ⊗ ca[1]

Takeuchi (1999): Entwined modules can be
viewed as comodules over a coring.



3. Corings
A is a ring. An A-coring is a coalgebra C
in AMA. This means that we have (A, A)-
bimodule maps

∆C : C → C and εC : C → A

such that the usual coassociativity and counit
properties hold. We write

∆C(c) = c(1) ⊗A c(2)

Right C-comodule: right A-module, with right
A-linear map

ρr : M → M ⊗A C

satisfying the usual coassociativity and counit
properties.
The category of right C-comodules is denoted
by MC.

Examples
1) let B → A be a ring morphism, and take
D = A⊗B A.

∆D : A⊗BA → A⊗BA⊗AA⊗BA ∼= A⊗BA⊗BA



∆D(a⊗ b) = a⊗ 1⊗ b

εD : A⊗B A → A, εD(a⊗ a′) = aa′

Let N be a right A-module, and ρr : N →
N ⊗A A⊗B A ∼= N ⊗B A.
(N, ρr) is a right D-comodule if and only if it
is a “descent datum” in the sense of Cipolla.
D is called the canonical coring.

2) Let (A, C, ψ) be a right-right entwining struc-
ture. Put

C = A⊗ C

C is an A-bimodule:

a′(a′′ ⊗ c)a = a′a′′aψ ⊗ cψ

Comultiplication and counit:

∆C : A⊗ C → A⊗ C ⊗A A⊗ C ∼= A⊗ C ⊗ C

∆C(a⊗ c) = a⊗ c(1) ⊗ c(2)

εC(a⊗ c) = ε(c)a



A right A⊗C-comodule is nothing else then an
entwined module
(identify M ⊗ C and M ⊗A A⊗ C).

x ∈ C is grouplike ⇐⇒ ∆C(x) = x ⊗A x and
εC(x) = 1. G(C) will be the set of grouplike
elements.

Take i : B → A, D = A⊗B A and C an arbitrary
A-coring.

Lemma

Hom coring(D, C) ∼= G(C)B

= {x ∈ G(C) | bx = xb, for all b ∈ B}

Proof: The homomorphism can corresponding
to x is given by

can(a⊗B a′) = axa′



Lemma G(C) is in bijective correspondence
with maps ρ : A → A ⊗A C making A into a
D-comodule.

Proof. Put ρ(a) = xa.

Corollary Let i : A → B be a ring morphism,
and C an A-coring. C ∼= A⊗B A if and only if
there exists x ∈ G(D)B such that can is bijec-
tive.

Definition (Brzezińksi) Let (C, x) be an A-
coring with a fixed grouplike, and

B = AcoC = {b ∈ A | ρ(a) = ax}
= {b ∈ A | xa = ax}

(C, x) is called a Galois coring if can is bijective.



Proposition (Wisbauer) TFAE

• (C, x) is a Galois coring

• ϕC : Hom C(A, C)⊗B A → C,
ϕC(f ⊗ a) = f(a), is an isomorphism

• ϕN : Hom C(A,N)⊗B A → N,
ϕN(f ⊗ a) = f(a), is an isomorphism for
every (C, A)-injective N ∈MC.

Remark that Hom C(A, •) ∼= (•)coC.

If (C, x) is Galois, then (obviously) MC and MD

are isomorphic. Assume that we also know
that MD and MB are equivalent (e.g. if BA is
faithfully flat). Then we have an equivalence
of categories

(F, G) : MB →MC



F (M) = M ⊗B A ; G(N) = NcoC

Proposition (Wisbauer) TFAE

• (C, x) is Galois and BA is faithfully flat

• AC is flat and A is a projective generator in
MC

• AC is flat and (F, G) is an equivalence

Examples
1) Let (A, C, ψ) be an entwining structure, and
x ∈ C grouplike. Then 1 ⊗ x ∈ G(A ⊗ C). We
recover the definition of coalgebra Galois ex-
tension.

2) Assume that a finite group G act as a group
of automorphisms on a k-algebra A, such that
AG = k. Put

C = ⊕σ∈GAvσ



with

avσb = aσ(b)vσ, ε(vσ) = δσ, e

∆(vσ) =
∑

τ∈G
vτ ⊗ vτ−1σ

Then x =
∑

σ∈G vσ is grouplike.

can : A⊗A → C, can(a⊗ b) =
∑

σ∈G
aσ(b)vσ

We recover the classical definition of Galois ex-
tension.

3) Let H be a Hopf algebra, and A an H-
comodule algebra, B = AcoH. Put

C = A⊗H

a′(a′′ ⊗ h)a = a′a′′a[0] ⊗ ha[1]

Take x = 1⊗ 1.

can : A⊗B A → A⊗H, can(a⊗ b) = ab[0]⊗ b[1]



4. Morita Theory (SC, J. Vercruysse, Shuan-
hong Wang)

R = ∗C = AHom(C,A)

is a ring:

(f#g)(c) = g(c(1)f(c(2)))

We have a ring homomorphism i : A → ∗C

i(a)(c) = εC(c)a

and a functor

F : MC →M∗C

m · f = m[0]f(m[1])

F is an isomorphism if AC is finitely generated
projective.
Fix x ∈ G(C, and let B = AcoC. we have an
adjunction between MB and MC.
Weak structure theorem (WST): if counit is
an isomorphism
Strong structure theorem (SST): if adjunction
is an equivalence



Let D = A⊗B A. Then ∗D ∼= BEnd (A)op, and

∗can : ∗C → ∗D ∼= BEnd (A)op

∗can(f)(a) = f(xa)

Obvious facts:

• (C, x) Galois ⇐⇒ ∗can is iso

• We have the converse if C and D are re-
flexive

• If (C, x) is Galois and (D,1⊗1) satisfies the
SST, then (C, x) also satisfies SST

• If (C, x) satisfies WST, then (C, x) is Galois

A is a right C-comodule, hence a right R-module.
It is also a left B-module, and a (B, R)-bimodule.



AEnd (C) is a left R-module:

(f#ϕ)(c) = ϕ(c(1)f(c(2))

Put

Q = {q ∈ ∗C | c(1)q(c(2)) = q(c)x, for all c ∈ C}

Lemma: Q is an (R, B)-bimodule.

Theorem We have a Morita context

(B, R, A, Q, τ, µ)

µ : Q⊗B A → R, µ(q ⊗B a) = q#i(a)

τ : A⊗R Q → B, τ(a⊗R q) = q(xa)

Theorem TFAE

• τ is surjective

• ∃Λ ∈ Q : Λ(x) = 1



• for every right R-module M

ωM : M ⊗R Q → MR

= {m ∈ M | m · f = mf(x),∀f ∈ R}

ωM(m⊗R q) = m · q

is bijective

Theorem Assume that AC is finitely generated
projective. TFAE

• τ is surjective

• (C, x) satisfies WST

• BA is projective and (C, x) is Galois



5. Cleft entwining structures (SC, J. Ver-
cruysse, Shuanhong Wang)
Entwining structure (A, C, ψ), coring C = A⊗C.
Fix a grouplike x ∈ c. 1 ⊗ x is a grouplike in
A⊗ C.

∗C = AHom(A⊗C,A) ∼= Hom(C,A)

as k-module. The multiplication is

(f#g)(c) = f(c(2))ψg(cψ
(1))

This algebra is denoted #(C, A).
The bimodule Q takes the following form:

Q = {q ∈ #(C, A) | q(c(2))ψ ⊗ cψ
(1) = q(c)⊗ x}

Remark that there is another algebra structure
on Hom(C,A), namely the usual convolution:

(f ∗ g)(c) = f(c(1))g(c(2))



Proposition Assume that λ : C → A is con-
volution invertible. TFAE

• λ ∈ Q

• for all c ∈ C:

λ−1(c(1))λ(c(3))ψ ⊗ cψ
(2) = ε(c)1A ⊗ x

• λ−1 is right C-colinear:

λ−1(c(1))⊗ c(2) = λ−1(c)ψ ⊗ xψ

If such a λ exists, then we call (A, C, ψ, x) cleft.

Proposition If (A, C, ψ, x) is cleft, then τ is
surjective.



Definition (A, C, ψ, x) satisfies the right nor-
mal basis property (RNB) if and only if B ⊗ C
and A are isomorphic as left B-modules and
right C-comodules.

Theorem TFAE

• (A, C, ψ, x) is cleft

• (A, C, ψ, x) satisfies SST and RNB

• (A, C, ψ, x) is Galois and satisfies RNB

• ∗can is bijective and (A, C, ψ, x) satisfies RNB


