Galois theory for corings and cleft entwining structures

S. Caenepeel Toronto, September 24, 2002

1. Survey of descent theory

The problem of descent theory

 $B \rightarrow A$ an extension of (commutative) rings.

1) N an ''object'' (module, algebra,...) defined over ${\cal A}$

Does there exist an object M over B such that $M \otimes_B A \cong N$?

2) Classify all these forms.

1) Galois descent theory (Serre, LNM 5, 1965) l/k Galois field extension.

 ${\cal N}$ descends to ${\cal M}$ iff there exists a Galois descent datum:

 $\varphi: G \to Aut_k(N)$ with $\varphi(\sigma) \sigma$ -semilinear The descended module is $M = N^G$.

2) Grothendieck (1959): descent theory for schemes

3) Knus-Ojangruren (LNM 389, 1974): affine version of Grothendieck descent.

Let $i: B \to A$ be a morphism of commutative rings.

Descent datum: (N,g), with $N \in \mathcal{N}_A$ and

 $g: A \otimes_B N \to N \otimes_B A$ in $\mathcal{M}_{A \otimes_B A}$

such that

 $g\mathbf{2} = g_{\mathbf{3}} \circ g_{\mathbf{1}} : A \otimes_{B} A \otimes_{B} N \to N \otimes_{B} A \otimes_{B} A$

 $\mu_N(g(\mathbf{1}\otimes_B m))=m$

Adjoint pair of functors (F,G) between \mathcal{M}_B and $\underline{\mathsf{Desc}}(A/B)$.

 $G(N,g) = \{n \in N \mid g(1 \otimes n) = n \otimes 1\}$

Equivalence of categories if and only if $B \rightarrow A$ is pure as a morphism of *B*-modules. A/B faithfully flat is a sufficient condition.

4) Cippola (Discesa fedelmente piatta dei moduli, 1976), Ph. Nuss (1997)

 $i: B \rightarrow A$ be a morphism of noncommutative rings.

"Descent datum": (N, ρ) with $N \in \mathcal{M}_A$, ρ : $N \to N \otimes_B A$ such that, with

$$\rho(n) = \sum_i n_i \otimes a_i$$

$$\sum_{i} n_{i} a_{i} = n \quad ; \quad \sum_{i} \rho(m_{i}) \otimes a_{i} = \sum_{i} n_{i} \otimes 1 \otimes a_{i}$$

Again we have an adjoint pair of functors between \mathcal{M}_B and $\underline{\text{Desc}}(A/B)$. It is an equivalence if A/B is faithfully flat.

5) Graded ring theory

Let A be a G-graded module, and $A_e = B$. We have an adjoint pair of funtors between \mathcal{M}_B and gr_A^G . It is an equivalence if and only if A is strongly graded. 6) *H* a Hopf algebra, *A* an *H*-comodule algebra, $B = A^{coH}$. Relative Hopf module *N*

$$\rho(nh) = \rho(n)\rho(h)$$

We have an adjoint pair of functors between \mathcal{M}_B and \mathcal{M}_A^H .

A is an H-Galois extension of B if

 $can:\ A\otimes_B A\to A\otimes H$

$$can(a \otimes a') = a\rho(a') = aa'_{[0]} \otimes a'_{[1]}$$

is an isomorphism. If moreover A/B is faithfully flat, then we have an equivalence of categories.

7) Brzeziński and Majid introduced the notion of coalgebra Galois extension (1996).

2. Generalized Hopf modules

Doi-Hopf modules (Doi-Koppinen 1992-1995) Let

- *H* a Hopf algebra
- A a (right) H-comodule algebra
- C a (right) H-module coalgebra

 ${\cal N}$ is called a Doi-Hopf module if ${\cal C}$ coacts on ${\cal M},~{\cal A}$ acts on ${\cal N},$ and

$$\rho(na) = n_{[0]}a_{[0]} \otimes n_{[1]}a_{[1]}$$

Special cases: modules, comodules, (relative) Hopf modules, graded modules, Yetter-Drinfeld modules. Entwined modules (Brzeziński-Majid (1996) Let A be an algebra, C a coalgebra, and ψ : $C \otimes A \rightarrow A \otimes C$. Write

$$\psi(c\otimes a) = a_{\psi}\otimes c^{\psi} = a_{\Psi}\otimes c^{\Psi}$$

$$(ab)_{\psi} \otimes c^{\psi} = a_{\psi} b_{\Psi} \otimes c^{\psi \Psi}$$

$$1_{\psi} \otimes c^{\psi} = 1 \otimes c$$

$$a_{\psi} \otimes \Delta(c^{\psi}) = a_{\psi \Psi} \otimes c^{\Psi}_{(1)} \otimes c^{\psi}_{(2)}$$

$$\varepsilon(c^{\psi}) a_{\psi} = \varepsilon(c) a$$

 (A, C, ψ) is called a right-right entwining structure. N is called an entwined module if

$$\rho(na) = n_{[0]}a_{\psi} \otimes n_{[1]}^{\psi}$$

Doi-Hopf modules are a special case:

$$\psi: C \otimes A \to A \otimes C, \quad \psi(c \otimes a) = a_{[0]} \otimes ca_{[1]}$$

Takeuchi (1999): Entwined modules can be viewed as comodules over a coring.

3. Corings

A is a ring. An A-coring is a coalgebra C in ${}_{A}\mathcal{M}_{A}$. This means that we have (A, A)-bimodule maps

 $\Delta_{\mathcal{C}}: \ \mathcal{C} \to \mathcal{C} \ \text{ and } \ \varepsilon_{\mathcal{C}}: \ \mathcal{C} \to A$

such that the usual coassociativity and counit properties hold. We write

$$\Delta_{\mathcal{C}}(c) = c_{(1)} \otimes_A c_{(2)}$$

Right C-comodule: right A-module, with right A-linear map

$$\rho^r: M \to M \otimes_A \mathcal{C}$$

satisfying the usual coassociativity and counit properties.

The category of right C-comodules is denoted by $\mathcal{M}^{\mathcal{C}}$.

Examples

1) let $B \to A$ be a ring morphism, and take $\mathcal{D} = A \otimes_B A$.

 $\Delta_{\mathcal{D}}: A \otimes_B A \to A \otimes_B A \otimes_A A \otimes_B A \cong A \otimes_B A \otimes_B A$

$\Delta_{\mathcal{D}}(a \otimes b) = a \otimes 1 \otimes b$

 $\varepsilon_{\mathcal{D}}: A \otimes_B A \to A, \quad \varepsilon_{\mathcal{D}}(a \otimes a') = aa'$

Let N be a right A-module, and ρ^r : $N \rightarrow N \otimes_A A \otimes_B A \cong N \otimes_B A$.

 (N, ρ^r) is a right \mathcal{D} -comodule if and only if it is a "descent datum" in the sense of Cipolla. \mathcal{D} is called the canonical coring.

2) Let (A, C, ψ) be a right-right entwining structure. Put

$$\mathcal{C} = A \otimes C$$

 \mathcal{C} is an A-bimodule:

$$a'(a''\otimes c)a = a'a''a_{\psi}\otimes c^{\psi}$$

Comultiplication and counit:

 $\Delta_{\mathcal{C}}: A \otimes C \to A \otimes C \otimes_A A \otimes C \cong A \otimes C \otimes C$ $\Delta_{\mathcal{C}}(a \otimes c) = a \otimes c_{(1)} \otimes c_{(2)}$ $\varepsilon_{\mathcal{C}}(a \otimes c) = \varepsilon(c)a$

A right $A \otimes C$ -comodule is nothing else then an entwined module

(identify $M \otimes C$ and $M \otimes_A A \otimes C$).

 $x \in \mathcal{C}$ is grouplike $\iff \Delta_{\mathcal{C}}(x) = x \otimes_A x$ and $\varepsilon_{\mathcal{C}}(x) = 1$. $G(\mathcal{C})$ will be the set of grouplike elements.

Take $i: B \to A$, $\mathcal{D} = A \otimes_B A$ and \mathcal{C} an arbitrary *A*-coring.

Lemma

Hom
$$_{\text{coring}}(\mathcal{D}, \mathcal{C}) \cong \mathrm{G}(\mathcal{C})^{\mathsf{B}}$$

= $\{x \in G(\mathcal{C}) \mid bx = xb, \text{ for all } b \in B\}$

Proof: The homomorphism can corresponding to x is given by

$$can(a\otimes_B a') = axa'$$

Lemma $G(\mathcal{C})$ is in bijective correspondence with maps ρ : $A \to A \otimes_A \mathcal{C}$ making A into a \mathcal{D} -comodule.

Proof. Put $\rho(a) = xa$.

Corollary Let $i : A \to B$ be a ring morphism, and C an A-coring. $C \cong A \otimes_B A$ if and only if there exists $x \in G(\mathcal{D})^B$ such that can is bijective.

Definition (Brzezińksi) Let (\mathcal{C}, x) be an *A*-coring with a fixed grouplike, and

$$B = A^{COC} = \{b \in A \mid \rho(a) = ax\}$$
$$= \{b \in A \mid xa = ax\}$$

 (\mathcal{C}, x) is called a Galois coring if can is bijective.

Proposition (Wisbauer) TFAE

- (\mathcal{C}, x) is a Galois coring
- φ_C : Hom^{\mathcal{C}}(A, \mathcal{C}) $\otimes_{\mathsf{B}} \mathsf{A} \to \mathcal{C}$, $\varphi_C(f \otimes a) = f(a)$, is an isomorphism
- φ_N : Hom^{\mathcal{C}}(A, N) $\otimes_{\mathsf{B}} \mathsf{A} \to \mathsf{N}$, $\varphi_N(f \otimes a) = f(a)$, is an isomorphism for every (\mathcal{C}, A)-injective $N \in \mathcal{M}^{\mathcal{C}}$.

Remark that Hom $^{\mathcal{C}}(A, \bullet) \cong (\bullet)^{co\mathcal{C}}$.

If (\mathcal{C}, x) is Galois, then (obviously) $\mathcal{M}^{\mathcal{C}}$ and $\mathcal{M}^{\mathcal{D}}$ are isomorphic. Assume that we also know that $\mathcal{M}^{\mathcal{D}}$ and \mathcal{M}_B are equivalent (e.g. if $_BA$ is faithfully flat). Then we have an equivalence of categories

$$(F,G): \mathcal{M}_B \to \mathcal{M}^{\mathcal{C}}$$

 $F(M) = M \otimes_B A$; $G(N) = N^{\operatorname{co}\mathcal{C}}$

Proposition (Wisbauer) TFAE

- (\mathcal{C}, x) is Galois and ${}_{B}A$ is faithfully flat
- ${}_A\mathcal{C}$ is flat and A is a projective generator in $\mathcal{M}^{\mathcal{C}}$
- $_{A}C$ is flat and (F,G) is an equivalence

Examples

1) Let (A, C, ψ) be an entwining structure, and $x \in C$ grouplike. Then $1 \otimes x \in G(A \otimes C)$. We recover the definition of coalgebra Galois extension.

2) Assume that a finite group G act as a group of automorphisms on a k-algebra A, such that $A^G = k$. Put

$$\mathcal{C} = \oplus_{\sigma \in G} A v_{\sigma}$$

with

$$av_{\sigma}b = a\sigma(b)v_{\sigma}, \quad \varepsilon(v_{\sigma}) = \delta\sigma, e$$

 $\Delta(v_{\sigma}) = \sum_{\tau \in G} v_{\tau} \otimes v_{\tau^{-1}\sigma}$
Then $x = \sum_{\sigma \in G} v_{\sigma}$ is grouplike.
 $can : A \otimes A \to C, \quad can(a \otimes b) = \sum a\sigma(b)v_{\sigma}$

We recover the classical definition of Galois extension.

 $\sigma \in G$

3) Let H be a Hopf algebra, and A an H-comodule algebra, $B = A^{coH}$. Put

$$\mathcal{C} = A \otimes H$$

$$a'(a'' \otimes h)a = a'a''a_{[0]} \otimes ha_{[1]}$$

Take $x = 1 \otimes 1$.

 $can : A \otimes_B A \to A \otimes H, \ can(a \otimes b) = ab_{[0]} \otimes b_{[1]}$

4. Morita Theory (SC, J. Vercruysse, Shuanhong Wang)

$$R = {}^{*}\mathcal{C} = {}_{A}\mathsf{Hom}\left(\mathcal{C},\mathsf{A}\right)$$

is a ring:

$$(f \# g)(c) = g(c_{(1)}f(c_{(2)}))$$

We have a ring homomorphism $i: A \rightarrow {}^{*}\mathcal{C}$

$$i(a)(c) = \varepsilon_{\mathcal{C}}(c)a$$

and a functor

$$F: \mathcal{M}^{\mathcal{C}} \to \mathcal{M}_{*\mathcal{C}}$$

$$m \cdot f = m_{[0]}f(m_{[1]})$$

F is an isomorphism if ${}_{A}C$ is finitely generated projective.

Fix $x \in G(\mathcal{C}, \text{ and let } B = A^{\operatorname{co}\mathcal{C}}$. we have an adjunction between \mathcal{M}_B and $\mathcal{M}^{\mathcal{C}}$.

Weak structure theorem (WST): if counit is an isomorphism

Strong structure theorem (SST): if adjunction is an equivalence

Let
$$\mathcal{D} = A \otimes_B A$$
. Then $*\mathcal{D} \cong {}_B \text{End} (A)^{\text{op}}$, and
 $*can : *\mathcal{C} \to *\mathcal{D} \cong {}_B \text{End} (A)^{\text{op}}$
 $*can(f)(a) = f(xa)$

Obvious facts:

- (\mathcal{C}, x) Galois $\iff *can$ is iso
- \bullet We have the converse if ${\mathcal C}$ and ${\mathcal D}$ are reflexive
- If (C, x) is Galois and $(D, 1 \otimes 1)$ satisfies the SST, then (C, x) also satisfies SST
- If (\mathcal{C}, x) satisfies WST, then (\mathcal{C}, x) is Galois

A is a right C-comodule, hence a right R-module. It is also a left B-module, and a (B, R)-bimodule. $_A$ End(C) is a left R-module:

$$(f \# \varphi)(c) = \varphi(c_{(1)}f(c_{(2)}))$$

Put

 $Q = \{q \in {}^*\mathcal{C} \mid c_{(1)}q(c_{(2)}) = q(c)x, \text{ for all } c \in \mathcal{C}\}$

Lemma: Q is an (R, B)-bimodule.

Theorem We have a Morita context (B, R, A, Q, τ, μ) $\mu : Q \otimes_B A \to R, \quad \mu(q \otimes_B a) = q \# i(a)$ $\tau : A \otimes_R Q \to B, \quad \tau(a \otimes_R q) = q(xa)$

Theorem TFAE

• τ is surjective

•
$$\exists \Lambda \in Q : \Lambda(x) = 1$$

• for every right R-module M

$$\omega_M : M \otimes_R Q \to M^R$$

= { $m \in M \mid m \cdot f = mf(x), \forall f \in R$ }
$$\omega_M(m \otimes_R q) = m \cdot q$$

is bijective

Theorem Assume that ${}_{A}C$ is finitely generated projective. TFAE

- τ is surjective
- (\mathcal{C}, x) satisfies WST
- $_BA$ is projective and (\mathcal{C}, x) is Galois

5. Cleft entwining structures (SC, J. Vercruysse, Shuanhong Wang) Entwining structure (A, C, ψ) , coring $C = A \otimes C$. Fix a grouplike $x \in c$. $1 \otimes x$ is a grouplike in $A \otimes C$.

 $^{*}\mathcal{C} = {}_{A}$ Hom (A \otimes C, A) \cong Hom (C, A)

as k-module. The multiplication is

$$(f \# g)(c) = f(c_{(2)})_{\psi} g(c_{(1)}^{\psi})$$

This algebra is denoted #(C, A). The bimodule Q takes the following form:

$$Q = \{q \in \#(C, A) \mid q(c_{(2)})_{\psi} \otimes c_{(1)}^{\psi} = q(c) \otimes x\}$$

Remark that there is another algebra structure on Hom (C, A), namely the usual convolution:

$$(f * g)(c) = f(c_{(1)})g(c_{(2)})$$

Proposition Assume that $\lambda : C \to A$ is convolution invertible. TFAE

 $\bullet \ \lambda \in Q$

• for all
$$c \in C$$
:
 $\lambda^{-1}(c_{(1)})\lambda(c_{(3)})_{\psi} \otimes c_{(2)}^{\psi} = \varepsilon(c)\mathbf{1}_A \otimes x$

•
$$\lambda^{-1}$$
 is right *C*-colinear:
 $\lambda^{-1}(c_{(1)}) \otimes c_{(2)} = \lambda^{-1}(c)_{\psi} \otimes x^{\psi}$

If such a λ exists, then we call (A, C, ψ, x) cleft.

Proposition If (A, C, ψ, x) is cleft, then τ is surjective.

Definition (A, C, ψ, x) satisfies the right normal basis property (RNB) if and only if $B \otimes C$ and A are isomorphic as left B-modules and right C-comodules.

Theorem TFAE

- (A, C, ψ, x) is cleft
- (A, C, ψ, x) satisfies SST and RNB
- (A, C, ψ, x) is Galois and satisfies RNB
- *can is bijective and (A, C, ψ, x) satisfies RNB