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Multiple groupoids as a non commutative tool for

higher dimensional local-to-global problems

Work done with Philip Higgins 1974-93, so quite old.

Why talk on it?

1) Aim is to publicise some not well appreciated

methods and tools of this linear theory. Hope to get

reactions from workers in the areas of this

conference (e.g. descent).

2) Just started a book project on

‘Crossed complexes and homotopy groupoids’

giving a full account of this material, accessible as a

novel account of basic algebraic topology and the

cohomology of groups.

3) This year is the 20th anniversary of my first

correspondence with Alexander Grothendieck

informing him of this interest in n-categories. An

extended correspondence led to Pursuing Stacks,

whose influence you all know.
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Major results: in the following diagram
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γ
// crossed
complexesλ

oo

• λ, γ are inverse adjoint equivalences,

• of monoidal closed categories,

• %, Π are homotopical functors,

• which preserve certain colimits

• and certain tensor products

• γ% ' Π

Filtered Space: X∗ : X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X∞
of subspaces of X∞.

Crossed complex

· · · // Cn

t
²²

δn // Cn−1
//

t
²²

· · · // C2
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e.g. C1 = π1(X1, X0), Cn = {πn(Xn, Xn−1, x) |x ∈ X0}
(In this talk, I am sticking to the linear theory. Not the

most general, but it has certain conveniences!)
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Why crossed complexes?

• Generalise groupoids and crossed modules.

• Good for modelling CW -complexes,

• Free crossed resolutions enable calculations with

small CW models of K(G, 1)s and their maps

(Whitehead, Wall, Baues)

• Linear model of homotopy types (including all

2-types)

• Convenient for calculation, and the functor Π is

classical, involving relative homotopy groups.

• Close to chain complexes with a group(oid) of

operators, and related to some classical homological

algebra (e.g. chains of syzygies)

• Monoidal structure suggestive of further

developments (e.g. crossed differential algebras)

• Good homotopy theory (cylinder object, homotopy

colimits)



Categorical Structures for Descent and Galois Theory ... Fields Institute, September 23-28, 2002 4

Why cubical ω-groupoids with connections?

• They are equivalent to crossed complexes

• They have a clear monoidal closed structure

• Cubical (unlike globular or simplicial) methods

allow for a simple algebraic inverse to subdivision

• Connections and the equivalence with crossed

complexes allow for the sophisticated notion of

commutative cube

• Can prove multiple compositions of commutative

cubes are commutative

• Current resurgence of cubes, in combinatorics,

concurrency, algebraic topology.
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Main aim of the work: colimit theorems which give

non abelian tools for higher dimensional

local-to-global problems

giving a variety of new, even non abelian,

calculations, which prove (i.e. test) the theory.

Relation with descent:

We suppose given an open cover U = {Uλ}λ∈Λ of X.

This defines a map

q : E =
⊔

λ∈Λ

Uλ → X

and so can form an augmented simplicial space

Č(q) : · · ·E ×X E ×X E
//
//
// E ×X E

//
// E

q
// X

where the higher dimensional terms involve disjoint

unions of multiple intersections of the Uλ.

We now suppose a filtered situation X∗, and so a

corresponding Č(q∗).
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Get a diagram as part of %(Č(q∗))

%(E∗ ×X∗ E∗)
//
// %(E∗)

%(q∗) // %(X∗). (c%)

MAIN RESULT (GVKT):

Connectivity conditions imply this is a coequaliser

diagram.

By facts stated earlier we get a coequaliser diagram

Π(E∗ ×X∗ E∗)
//
// Π(E∗)

%(q∗) // Π(X∗). (cΠ)

and so get calculations of the familiar Π(X∗).

So we need to understand the definition of

the fundamental cubical ω–groupoid %(X∗) of a

filtered space X∗
as a generalisation of the fundamental groupoid on a

set of base points.
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In
∗ : the n-cube with its skeletal filtration.

Set Rn(X∗) = FTop(In
∗ , X∗).

This is a cubical set with compositions, connections,

and inversions.

For i = 1, . . . , n there are standard:

face maps ∂±i : RnX∗ → Rn−1X∗;

degeneracy maps εi : Rn−1X∗ → RnX∗

connections Γ±i : Rn−1X∗ → RnX∗

compositions a ◦i b defined for a, b ∈ RnX∗ such that

∂+
i a = ∂−i b

inversions −i : Rn → Rn.

Connections are induced by γα
i : In → In−1 defined

using monoid structures max, min : I2 → I. Essential

for many reasons, e.g. to discuss the notion of

commutative cube.

Obvious geometric properties.
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p : Rn(X∗) → %n(X∗) = (Rn(X∗)/ ≡)

is the quotient map, where f ≡ g ∈ Rn(X∗) means

filter homotopic (i.e. through filtered maps) rel

vertices of In

Facts (RB-PJH, JPAA 1981)

• The compositions on R are inherited by % to give

%(X∗) the structure of cubical multiple groupoid

with connections.

• The map p : R(X∗) → %(X∗) is a Kan fibration of

cubical sets.

The second result is almost unbelievable. Its proof

has to give a systematic method of deforming a cube

with the right faces ‘up to homotopy’ into a cube with

exactly the right faces, using the given homotopies.

Here is an application which is essential in many

proofs.
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Theorem: Lifting multiple compositions

Let [α(r)] be a multiple composition in %n(X∗). Then

representatives a(r) of the α(r) may be chosen so that

the composition a(r) is well defined in Rn(X∗).

Proof: The multiple composition [α(r)] determines a

cubical map

A : K → %(X∗)

where the cubical set K corresponds to a

subdivision of the geometric cube.

Consider the diagram

∗ //

²²

R(X∗)

p

²²

K A
//

A′{
{

{
{

{
{

=={
{

{
{

{

%(X∗)

.

Then K collapses to ∗, written K ↘ ∗.
By the fibration result,

A lifts to A′, which represents a(r), as required.

So we have to explain collapsing.
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Collapsing Let C ⊆ B ⊆ In be subcomplexes.

C is an elementary collapse of B, B ↘e C, if for

some s > 1 there is an s-cell a of B and (s− 1)-face b

of a, the free face, such that

B = C ∪ a, C ∩ a = ȧ \ b

(where ȧ denotes the union of the proper faces of a).

B1 ↘ Br, B1 collapses to Br, if there is a sequence

B1 ↘e B2 ↘e · · · ↘e Br

of elementary collapses.

If C is a subcomplex of B then

B × I ↘ (B × {0} ∪ C × I)

(this is proved by induction on dimension of B \ C).

In collapses to any one of its vertices (this may be

proved by induction on n using the first example.)
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Partial boxes

Let C be an r-cell in the n-cube In.

Two (r − 1)-faces of C are called opposite if they do

not meet.

A partial box in C is a subcomplex B of C generated

by one (r − 1)-face b of C (called a baseof B) and a

number, possibly zero, of other (r − 1)-faces of C

none of which is opposite to b.

The partial box is a box if its (r − 1)-cells consist of

all but one of the (r − 1)-faces of C.

The proof of the fibration theorem uses a filter

homotopy extension property and the following:
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Key Proposition: Let B, B′ be partial boxes in an

r-cell C of In such that B′ ⊆ B. Then there is a chain

B = Bs ↘ Bs−1 ↘ · · · ↘ B1 = B′

such that

(i) each Bi is a partial box in C

(ii) Bi+1 = Bi ∪ ai where ai is an (r − 1)-cell of C not

in Bi;

(iii) ai ∩Bi is a partial box in ai.

Proof is quite neat, and follows the pictures.

Methods of collapsing generalise methods of trees in

dimension 1.

The proof of the fibration theorem gives a program

for carrying out the deformations needed to do the

lifting. In some sense, it implies computing a multiple

composition can be done using collapsing as the

guide.
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Another key concept is that of thin element

α ∈ %n(X∗) for n > 2.

α is geometrically thin if it has a representative

a : In
∗ → X∗ such that a(In) ⊆ Xn−1.

α is algebraically thin if it is a multiple composition of

degenerate elements or those coming from repeated

negatives of connections.

Any composition of algebraically thin elements is

thin.

Theorem (i) algebraically thin ≡ geometrically thin.

(ii) In a cubical ω–groupoid with connections, any

box has a unique thin filler.

Proof (i) ⇒ This uses lifting of multiple compositions,

in a stronger form than stated above.

⇐ and (ii) This uses the full algebraic relation

between ω–groupoids and crossed complexes.
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Back to diagram as part of %(Č(q∗))

%(E∗ ×X∗ E∗)
//
// %(E∗)

f
&&NNNNNNNNNNNNNNNNN

%(q∗) // %(X∗)
f ′

²²Â
Â
Â
Â

G

(c%)

Proof of GVKT involves checking the universal

property for morphisms f : %(E∗) → G where G is a

cubical ω-groupoid with connection.

To get the morphism f ′ : %(X∗) → G you subdivide a

representative a = [a(r)] of an element α ∈ %(X∗) so

that a(r) lies in an element U (r) of U ; use connectivity

conditions to deform a(r) into

b(r) ∈ R(U (r)
∗ )

and so obtain

β(r) ∈ %(U (r)
∗ ).

The elements

fβ(r) ∈ G

may be composed in G (by the conditions on f ), to

give an element

θ(α) = [fβ(r)] ∈ G.
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So the proof of the universal property has to use

algebraic inverse to subdivision.

To prove θ(α) well defined uses crucially properties

of thin elements. The key point:

a filter homotopy h : α ≡ α′ in Rn(X∗) gives

a deficient element of Rn+1(X∗).

Do the subdivision and deformation argument on

such a homotopy, push the little bits in some

%n+1(U
λ
∗ )

(now thin) over to G, combine them and get a thin

element

τ ∈ Gn+1

all of whose faces not involving the direction (n + 1)

are thin

because h was given to be a filter homotopy.

An inductive argument on unique thin fillers of boxes

then shows

τ is degenerate in direction (n + 1)

so the two ends in direction (n + 1) are the same.
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Conclusion and questions

• Mirroring the geometry by the algebra is crucial for

conjecturing and proving universal properties.

• Thin elements are crucial as modelling

commutative cubes, a concept not so easy to define

or handle algebraically.

• Colimit theorems give, when they apply, exact

information even in non commutative situations. The

implications of this for homological algebra could be

important.

• One construction inspired eventually by this work,

the non abelian tensor product of groups, has a

bibliography of 75 papers since it was defined with

Loday in 1985.

• Globular methods do not fit easily into this scheme.

• For computations we really need strict structures

(although we do want to compute invariants of

homotopy colimits).
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• In homotopy theory, identifications in low

dimensions can affect high dimensional homotopy.

So we need structure in a range of dimensions to

model homotopical identifications algebraically.

• In this way we calculate say crossed modules

modelling homotopy 2-types, whereas the

corresponding k-invariant is often difficult to

calculate.

• Use of crossed complexes in Čech theory: current

project with Tim Porter.

• Question Applications in other contexts where the

fundamental groupoid is currently used? Algebraic

geometry?

• Question Uses in differential geometry? Is there a

non abelian De Rham Theory, using an analogue of

crossed complexes?

• Question Is there a truly non commutative

integration theory based on limits of compositions of

elements of multiple groupoids?


